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Abstract—Treatment recommendation is a complex multi-
faceted problem with many treatment goals considered by clini-
cians and patients, e.g., optimizing the survival rate, mitigating
negative impacts, reducing financial expenses, avoiding over-
treatment, etc. Recently, deep reinforcement learning (RL) ap-
proaches have gained popularity for treatment recommendation.
In this paper, we investigate preference-based reinforcement
learning approaches for treatment recommendation, where the
reward function is itself learned based on treatment goals, without
requiring either expert demonstrations in advance or human
involvement during policy learning. We first present an open sim-
ulation platform 1 to model the evolution of two diseases, namely
Cancer and Sepsis, and individuals’ reactions to the received
treatment. Secondly, we systematically examine preference-based
RL for treatment recommendation via simulated experiments
and observe high utility in the learned policy in terms of
high survival rate and low side effects, with inferred rewards
highly correlated to treatment goals. We further explore the
transferability of inferred reward functions and guidelines for
agent design to provide insights in achieving the right trade-
off among various human objectives with preference-based RL
approaches for treatment recommendation in the real world.

I. INTRODUCTION

With recent advances in deep learning, deep reinforcement

learning (RL) approaches have gained popularity for treatment

recommendation [1]–[6]. But the success of RL applications

often crucially depends on the prior knowledge that goes into

the definition of the reward function [1]–[3], [7]. However,

treatment recommendation is a multi-faceted problem where

the reward function is hard to engineer and requires quanti-

fying the trade-off among diverse types of treatment goals:

1) Clinicians aim to optimize the survival rate (or expected

lifetime) while mitigating negative impacts of treatments [1],

[2], [5]; 2) Patients often consider reducing financial expenses

and time costs in accepting treatment strategies [4], [8];

3) Other factors are considered to avoid over-treatment or

follow agreements based on the medical insurance plan for an

affordable treatment [3].

To explicitly reflect humans’ treatment goals in the reward

functions, prior work has jointly considered multiple objectives

linearly weighted to reduce the problem to a single-objective

MDP [4]–[6], [8]. However, the linearly weighted reward

function induces negative interference between objectives (see

Section IV-D) and ends with treatment outcomes against

humans’ actual intentions, especially when representations are

learned using neural networks and shared among different

1https://sites.google.com/view/tr-with-prl/

Fig. 1: Illustration of preferences over two treatment trajecto-

ries given a patient with Cancer, based on two treatment goals.

Starting from an initial state I , the patient adopts a treatment

strategy with trajectory τ and ends with either survival S or

death D outcome. The final tumor size value is also shown

for Goal II. A trajectory can be preferred to the other (�) or

the two can be incomparable (∼).

(a) Goal I: Survive (b) Goal II: Survive with small tumor

objectives [9], [10]. Another line of approach is to infer

the clinicians’ intrinsic reward function using existing inverse

reinforcement learning (IRL) methods [11], [12]. However,

these assume that the historical demonstrations comprising

of clinicians’ treatment strategies are from an optimal policy,

which is not guaranteed in practice [13]–[16].

Fortunately, while it is hard to obtain demonstrations from

an optimal policy, qualitative feedback from clinicians’ pref-

erences can be easily obtained and efficiently leveraged to

infer reward functions. In this paper, we investigate preference-

based reinforcement learning approaches [16]–[23] for treat-

ment recommendation, where a reward function is learned

using treatment goal-directed preferences over pairs of tra-

jectories. Different from existing work where the preferences

mainly come from human annotators [21], [22] or the level of

noise applied to suboptimal demonstrations [23], we consider

the treatment goal itself as the criterion of preference over

two treatment trajectories for any sampled subject, without

requiring demonstrations in advance or any expert involvement

during policy learning. Take Patient A in Fig. 1a as an

example: when the treatment goal is to save the patient’s

life alone, then the treatment trajectory τ1A, which leads to



the survival outcome, is preferred to trajectory τ2A that ends

with death. Given preference over two trajectories, we follow

the Bradley–Terry model [24] and assume that the preference

probability of one trajectory depends exponentially on the

reward sum, after which the reward learning problem is turned

into a binary classification task.

However, acceptance of preference-based RL approaches for

treatment recommendation requires significant exploration in

the inferred rewards and achieved performance. This paper

investigates the above aspects with the following contributions:

• We first develop an open simulation platform to model

the dynamic state transitions of individuals with Cancer
or Sepsis, as well as their reactions to the received med-

ication or operation treatment. The developed simulation

platform enables efficient model training and reliable

performance evaluation.

• Next, we conduct comprehensive simulated experiments

to obtain the following conclusions: 1) Utility: The

preference-based RL framework outperforms other treat-

ment recommendation baselines with high survival rate

and low side effects under different treatment goals. 2)

Goal-Correlated: The reward function inferred from pref-

erence is highly correlated to several important factors in

treatment goals.

• We further explore the transferability of the inferred

rewards to different scenarios, which shed light to transfer

preference-based RL models trained in simulation to the

real world with low costs.

• We provide guidelines for agent design in preference-

based RL framework, i.e., competitive RL agents with

diverse policies achieve better treatment outcomes than

others.

II. PROBLEM DEFINITION

We cast the treatment policy learning as a Markov De-

cision Process (MDP)2, where an agent interacts with an

environment over a sequence of steps: at each time step t,
the agent receives a state st ∈ S from the environment and

responds with an action at ∈ A. The environment state transi-

tion is controlled by the probability function P(st+1|st, at)
and the agent continues to interact until a terminal state

is reached at time T 3. Given an initial state s0, the agent

follows a policy π and generates a trajectory of sequence

τ = ((s0, a0), (s1, a1) . . . , (sT−1, aT−1)) ∈ (S × A)T . In

traditional reinforcement learning, the agent receives a reward

rt ∈ R at each time step and aims to maximize the expected

return by summing up the rewards with a discount factor.

Instead of assuming a reward signal from the environment,

we consider that a clinician or a patient establishes a treatment

2For simplicity, here we assume all the system variables can be observed
directly. In our experiments, policy learning for Cancer is MDP while Sepsis
is Partially Observable MDP, where only a subset of system variables are
observable.

3We use the maximum simulation time T to denote the trajectory length
in general. In Cancer experiments, the simulation stops if the subject dies
intermittently.

goal in advance4, and preference between two treatment trajec-

tories for a specific patient can be produced naturally accord-

ingly to their goal fulfillment. We use pre(τ1, τ2) = τ1 � τ2

to indicate that trajectory τ1 is preferred to trajectory τ2, and

pre(τ1, τ2) = τ1 ∼ τ2 for incomparable trajectories.

In Fig 1, we demonstrate an example of dosage recommen-

dation for Cancer patients with two types of goals:

• Goal I-Survive: In Fig. 1a, the trajectory leading to

survival outcome is preferred to that with death out-

come: pre(τ1A, τ
2
A) = τ1A � τ2A; two trajectories are

incomparable when they both have identical outcomes:

pre(τ1B , τ
2
B) = τ1B ∼ τ2B , and pre(τ1C , τ

2
C) = τ1C ∼ τ2C .

• Goal II-Survive with small tumor: In Fig 1b, con-

sidering two trajectories with both survival outcomes,

the one resulting in smaller tumor size is preferred:

pre(τ1A, τ
2
A) = τ1A � τ2A; trajectories that enable the

patient to survive are always preferred over those leading

to deaths: pre(τ1B , τ
2
B) = τ1B � τ2B ; if neither trajectory

results in a survival outcome, they are incomparable:

pre(τ1C , τ
2
C) = τ1C ∼ τ2C .

Informally, the goal of the agent is to recommend treatment

strategies which are preferred based on humans’ treatment
goals. To achieve this, the agent aims to maximize the

expected return with rewards inferred from the preferences,

which is explained in detail in the following section.

III. METHOD

After setting the treatment goal, we demonstrate the joint

learning framework for reward and policy in Algorithm 1.

Given one sampled subject, two agents with their policies

parameterized by θ1P and θ2P provide the pairwise trajectories

to compare, and a reward model parameterized by θR estimates

a reward function with preference.

In the beginning, parameters for the reward and policy

model are randomly initialized (line 1), and the preference

and trajectory samples for the model update are created as

empty lists (line 2). In each training iteration, one subject is

sampled from the training set to receive treatment from both

agents (line 3 to 6). At each time step, the agent makes the

treatment decision based on the current state, the simulator

updates the subject’s status, and the reward model generates

the corresponding step-wise reward (line 7 to 12). At the end

of the trajectory, the trajectory list is augmented with the latest

treatment trajectory (line 13), while the preference list for the

reward model is also updated (line 16) with the preference

over trajectories from two agents according to the treatment
goal (line 15). After traversing over all training subjects, a

minibatch of the preference samples is extracted to fit the

reward function (line 19), while a minibatch of the trajectory

samples is utilized to optimize the policies for both agents

(line 20).

4Note the difference from some prior preference-based RL works [21], [22],
no dedicated human overseer is required in the loop to compare pairwise
treatment strategies in our setting. Instead, only the treatment goal composed
of one or more evaluation criteria is required before policy learning.



Algorithm 1 PREFERENCE-BASED RL FRAMEWORK

Require:
S′: initial states of sampled subjects

N : number of training iterations

T : the maximum simulation time to treat each subject

1: Randomly initialize θR, θ
1
P , θ

2
P

2: D = ∅,Γ1 = ∅,Γ2 = ∅
3: for n = 0 to N − 1 do // One training iteration

4: for all s ∈ S′ do // One sampled subject

5: for i ∈ [1, 2] do // One agent

6: si0 ← s, τ i ← ∅
7: for t = 0 to T − 1 do
8: ait ← π(sit; θ

i
P )

9: sit+1 ← SIMULATE
(
sit, a

i
t

)

10: rit ← REWARD(sit, a
i
t; θR)

11: τ i ← τ i ∪ {(sit, ait, rit)}
12: end for
13: Γi ← Γi ∪ {τ i}
14: end for
15: pre(τ1, τ2)←EVALUATE(τ1, τ2) // Follow Treat-

ment goal

16: D ← D ∪ (
τ1, τ2, pre(τ1, τ2)

)

17: end for
18: Drawing minibatches Γ1

n ∼ Γ1,Γ2
n ∼ Γ2,Dn ∼ D

19: Fitting the reward function θR with Dn

20: Optimizing the policy θ1P with Γ1
n, θ

2
P with Γ2

n

21: end for

A. Fitting the Reward Function
Our reward model is parameterized by θR with a deep

neural network, which takes the state-action pair (st, at) as
input and produces an estimated reward rt ∈ R. To train the
reward model with preference between two given trajectories,
we follow the Bradley–Terry model [24] and adopt the com-
mon practice in existing preference-based RL work [16], [21]–
[23], where the reward model is interpreted as a preference
predictor. Specifically, it is assumed that the probability of
preferring trajectory τ depends exponentially on the value of
the discounted reward sum over the length of the trajectory:

p(pre(τ1, τ2) = τ1 � τ2; θR) =
expR(π1, s0; θR)

expR(π1, s0; θR) + expR(π2, s0; θR)
,

(1)

where capital R denotes the expected return following policy

π for a patient with initial state s0.
We then cast the reward learning problem as a classic

binary classification task, where two trajectories are given
and the reward model learns to approximate the preference
between the two. Therefore the cross-entropy loss between the
predictions and the actual label determined by the treatment
goal is minimized:

L(θR) = −
∑

(τ1,τ2,pre(τ1,τ2))∼Dn

(
I(τ1 � τ2) log p(τ1 � τ2; θR)

(2)

+ I(τ2 � τ1) log p(τ2 � τ1; θR)
)
,

where I(· � ·) is an indicator function determined by pre(·, ·),
which equals 1 if the first is preferred to the second, 0

otherwise.

B. Optimizing the Policy

At timestep t, the agent observes state st, takes action at,
and receives rθR(st, at) from the reward model. We propose

to use the following two kinds of reward definitions for policy

learning:

• Action-based Reward Modification (AbRM): the

preference-based reward rθR(st, at) is directly utilized by

the agent for policy learning.

• State-based Reward Modification (SbRM): We derive

a new state value hθR from rθR to represent how good

the current state is: hθR(st) = maxa rθR(st, a). We then

compute the advantage value of the current state over the

previous: hθR(st)−hθR(st−1), as the final reward for the

policy learner.

Since the preference-based reward is a non-stationary value
approximated by a neural network, we implement agents with
the policy gradient algorithm, which is robust to changes in
the reward function [12], [21]. We maximize the expected
return by repeatedly estimating the gradient, and optimizing
the policy with gradient descent. To avoid high variance in
policy updates, we subtract a baseline b (determined by the
current state only) from the expected return R [25]:

L(θP ) = −
∑
τ∈Γn

( |τ |∑
t=0

log π(at|st)
( |τ |∑
t′=t

(R− bt′)
))

. (3)

IV. EXPERIMENTS

By answering the following research questions about

preference-based RL, we focus on building a comprehensive

understanding of its effects on treatment recommendation.

• RQ1-Utility: Does the preference-based qualitative feed-

back really benefit policy learning as opposed to hand-

crafted rewards or other treatment recommendation ap-

proaches?

• RQ2-Goal Correlated: Does the reward function in-

ferred from preference faithfully follow humans’ treat-

ment goals?

• RQ3-Reward Transferability: Is it beneficial to transfer

the inferred rewards trained for one scenario to other

relevant ones?

• RQ4-Agent Design: How to design RL agents so that

treatment goal-directed preference over their trajectories

leads to more accurate reward estimation and more

aligned outcomes with the treatment goal?

A. Simulation Settings

We first construct a simulation platform with disease evolu-

tion and treatment reactions modeled for Cancer and Sepsis,

and then conduct experiments to evaluate treatment outcomes

of different recommendation approaches. Please refer to our

website 5 for a detailed description of the simulation platform

and implementation details.

5https://sites.google.com/view/tr-with-prl/simulations



a) Dosage Recommendation for Cancer: We use the

mathematical model proposed by [6] to simulate cancer evo-

lution and drug treatment effects with random state initializa-

tion. Each time-step represents one month in the real world.

The agent receives the current tumor size yt ∈ R
+ and

toxicity level xt ∈ R
+, and then suggests a dosage amount

dt ∈ {0.1, 0.4, 0.7, 1.0} to the subject. The subject’s health

condition updates until the end of the 6-month treatment

(T = 7) or stops if the subject dies intermittently according

to the state-based hazard function. We consider three kinds of

treatment goals during Cancer treatment:

• CE: maximize clinical efficacy, i.e., survival rate.

• CE&OF-I: maximize clinical efficacy and mitigate neg-

ative effects represented by the sum of the final tumor

size and the toxicity level: yT−1 + xT−1.

• CE&OF-II: similar to CE&OF-I with negative effects

represented by two separate health signs: highest toxicity

level during treatment maxT−1
t=0 xt, final tumor size yT−1.

b) Blood Purification for Sepsis: We employ the math-

ematical model derived by [26] to simulate the acute inflam-

mation process in response to an infection, where parameters

for subjects are calibrated so that the generated trajectories

without treatment closely follow observed temporal patterns

in the real world. Each time-step represents 0.1 hour in the

real world. The environment is partially observable, and the

agent can observe only 8 out of 19 physiological features that

govern Sepsis dynamics. At each time-step t between 5th to

18th hour6, the agent takes an action at ∈ {0, 1} to decide

whether to perform a 2-hour blood purification operation.

After 100-hour simulation (T = 1000), the survival status

is determined by one of the physiological features. Besides

maximizing survival rate (CE), we also set another treatment

goal as avoiding too frequent operations:
∑T−1

t=0 at (CE&OF).

B. Compared Approaches

We compare results from AbRM and SbRM with the fol-

lowing approaches proposed in treatment recommendation

literature:

• Non-learning [6], [17]: 1) Constant: A static dosage amount

is given to all subjects for six months; 2) Random: One of the

four dosage options is randomly selected at each time-step; 3)

Upper Bound: The subjects with Sepsis receive operations all

the time throughout the simulation period7.

• Preference Learning [17]: in the Preference-Based Policy

Iteration (PBPI), one action is preferred to the other based on

their outcomes after certain times of simulations.

• Reinforcement Learning with hand-crafted Reward: 1)

Single-objective RL [27]: the conventional policy gradient

approach; it receives +1 for survival, −1 for death, and 0

6We set the operation time between 5-th and 18-th hour to make the task
not too easy (earlier treatment mainly results in survival outcomes) or too
infeasible (later treatment has little positive effects and subjects can rarely
survive).

7In Upper Bound, receiving 2-hour treatments all the time equals 7 times
of operation during 5∼18-th hour.

TABLE I: Cancer dosage recommendation: Main results under

treatment goal of CE and CE&OF-I. The treatment goal is

to maximize Survival Rate (CE), and mitigate side effects in

terms of final tumor size and toxicity level (CE&OF-I). The

best result per metric is marked in boldface. We present avg±
stdev values for experiments with 10 random seeds.

Method Survival Rate Tumor+Toxicity

Constant Best (0.4) 19.91%±0.58% 2.22±0.04
Constant Worst (0.1) 4.89%±0.68% 3.72±0.03
Random 17.81%±0.91% 2.23±0.04

PBPI 21.79%±0.64% 2.21±0.07

Single-objective RL 26.96%±3.02% 1.16±0.48
Single-objective RL (Ensemble) 27.38%±3.32% 1.14±0.49
Existing Multi-objective RL 18.84%±5.77% 2.28±0.66
Grid-search Multi-objective RL 28.98%±3.42% 0.66±0.45

AbRM (CE) 31.52%±1.38% 0.46±0.06
AbRM (CE & OF-I) 31.33%±1.18% 0.39±0.02
SbRM (CE) 30.54%±3.46% 0.68±0.45
SbRM (CE&OF-I) 31.72%±1.08% 0.43±0.06

for all intermediate steps. 2) Single-objective RL (Ensemble):
two agents are trained independently, and the one with better

performance on the validation set is evaluated on the testing

set. It is developed for fair comparison as two agents with

different parameter initializations are used in the preference-

based RL framework. 3) Existing Multi-objective RL [6]:

manually defined rewards based on key factors are assigned to

each time-step. 4) Grid-search Multi-objective RL [28]: both

survival rate and the negative impacts are treated as objectives

and employ the best linear scalarization retrieved from grid

search.

C. Performance Comparison (RQ1)

a) Cancer: We list treatment outcomes of different ap-

proaches for the first two goals (CE and CE&OF-I) in Table I

and the third goal (CE&OF-II) in Table II 8.

Table I: Considering Survival Rate maximization as the

only treatment goal, agents learning from either action-based

(31.52%) or state-based (30.54%) preference reward have

much better performance in saving lives than Single-objective
RL (26.96%), where the hand-crafted reward is used. When

negative impacts (CE&OF-I: sum of final tumor size and

toxicity level) are expected to be mitigated besides saving

lives, agents receiving rewards inferred from preference are

capable of maintaining the high survival rate with low negative

impacts than other baselines.

Table II: When the highest toxicity level during treatment

and final tumor size are separate goals to be accomplished

besides maximizing survival rate (CE&OF-II), we observe that

preference-based reward guides the agent to policies with the

highest survival rates, while one negative impact gets reduced

but the other increases compared with other approaches. This

is expected since the two side-goals are conflicting in nature:

large amounts of dosage result in higher toxicity levels but

smaller tumor sizes and vice-versa.

8https://sites.google.com/view/tr-with-prl/appendix



Fig. 2: Sepsis operation recommendation: (a)(b) Main results under treatment goal of CE and CE&OF; (c) Evolution of

treatment outcome indicator PI on testing septic subjects; (d)(e) Highly-correlated expected return of inferred reward and

survival rate; (f)(g) Reward function pre-trained on 2-hour operation task provides better initial performance on 4-hour setting.

(a) Maximize Survival Rate Goal for CE and CE&OF (b) Minimizing #Operations Goal for CE&OF (c) Evolution of PI Value (CE)

(d) AbRM Training (CE) (e) SbRM Training (CE) (f) AbRM Transferability (2→4h) (CE) (g) SbRM Transferability (2→4h) (CE)

b) Sepsis: Figure 2a and 2b illustrate the performance

bar charts of different approaches evaluated by Survival Rate
and Number of Operations. When guided by preference-based

reward rather than manually defined reward, a slightly higher

Survival Rate is achieved by both AbRM and SbRM, while

the average number of operations has fallen considerably, by

6.79% with AbRM and 14.50% with SbRM. Note that although

Multi-objective RL leads to the fewest number of operations,

the resulting Survival Rate drops down to make undesired

trade-offs between survival rate maximization and negative

impact mitigation. In Fig. 2c, we also illustrate the evolution

of the treatment outcome indicator PI during T = 1000
simulation for 1, 000 testing Septic subjects without and with

blood purification treatment from preference-based RL agents.

D. Compared with Hand-Crafted Rewards (RQ1)

a) Optimal Policies with Low Variances: As shown

in Table I and Table II, compared with conventional Policy
Gradient with hand-crafted rewards, the RL agents learning

with rewards inferred from preference are able to provide the

highest survival rate and smallest side effects with relatively

small variance under different random seeds. Besides the

common practice of assigning −1/+1 rewards to trajectories

with death/survival outcomes [1]–[3], we here investigate per-

formance of Policy Gradient with more comprehensive hand-

crafted reward designs (absolute reward value ranges from 1
to 100), and show results in Fig. 3a, 3b and 3c. The different

distributions of good policies (darker blue grids concentrated

around upper right in Fig. 3a, lower left in Fig. 3b and lower

right in Fig. 3c) in three random seeds illustrate the difficulty

of finding a stationary reward design with consistently good

performance. When learning from hand-crafted rewards under

distinct random seeds, the Policy Gradient approach converges

to different local minima, resulting in average sub-optimal

performance with high variance.

b) Priorities Recognized among Different Treatment
Goals: In Fig. 3d, 3e and 3f, we further show subopti-

mal performance obtained by Multi-objective RL with grid-

searched linear scalarization, when humans aim to realize

multiple treatment goals, some of which are competing with

each other (e.g., more dosage treatment causes smaller tumor

but higher toxicity). Different ratios of objective factors used

in the reward function cause negative interference between

minimizing tumor size and reducing toxicity level, while the

RL agent can hardly recognize the priority of saving subjects’

lives over mitigating the other two side effects. In the end, the

Multi-objective RL approach achieves quite low survival rate,

although with small tumor size (red zones in Fig. 3d or 3e)

or low toxicity level (blue zones in Fig. 3d and 3f). Instead

of using a linear combination of goal factors as rewards, the

proposed framework infers the reward function with treatment
goal-directed preference and is able to prioritize maximizing

survival rate over other goals, which aligns well with human

intent.

c) Incorporating Incomparable Trajectories for Better
Performance: Given two treatment trajectories for one sam-

pled subject, if they have identical performance according to

human’s objectives, then the two trajectories are deemed to

be incomparable. Take Patient C in Fig. 1a as an example:

neither of the two policies τ1C and τ2C , should be preferred

since they both results in deaths. Therefore this trajectory pair

is incomparable, i.e., τ1C ∼ τ2C . Since no clear preference

conclusion can be drawn between the two incomparable tra-

jectories, the majority of existing work in preference learning

disregarded them directly [17]–[21]. Only comparable pairs,

either τ1 preferred to τ2 (I(τ1C , τ
2
C) = 1) or τ2 preferred to τ1



Fig. 3: Cancer dosage recommendation: (a)(b)(c) Different

distributions of good policies learned by conventional Pol-
icy Gradient from diverse reward designs for survival/death

outcomes; (d)(e)(f) Multi-objective RL learning from linearly

weighted reward function leads to sub-optimal performance:

low survival rate although with small tumors (red zones) or

low toxicity (blue zone); the linear weight assigned to each

factor is one of four values: {1, 2, 4, 8} and each marker rep-

resents performance obtained by one of the 37 combinations.

(a) PG for CE: Seed 2001 (b) PG for CE: Seed 2002

(c) PG for CE: Seed 2003 (d) MORL for CE&OF-II: Survivals

(e) MORL for CE&OF-II: Tumor (f) MORL for CE&OF-II: Toxicity

(I(τ2C , τ
1
C) = 1), are included in the training set to optimize

preference approximation. However, preference learning based

on comparable trajectories alone achieves quite unsatisfactory

survival rate in our treatment recommendation tasks (green

curve in Fig. 4c). Two reasons are likely to contribute to this

failure: 1) polarized preference (one preferred with probability

0.75, and the other 0.25 is inferred in Fig. 4a) between

two incomparable trajectories although the preference label

is never provided in the training set; 2) only around one-

fifth of the trajectory pairs (2,000 comparable from 10,000

sampled subjects) are leveraged in each epoch for reward

model update (green line in Fig. 4b). After the above per-

formance analysis, we find that excluding incomparable pairs

from the training set leaves the parameterized reward model

exploring the reward space arbitrarily and inferring random

preferences between two trajectories even when they are in-

comparable. To avoid arbitrary exploration in the reward space,

we handle the incomparable pairs with a simple approach:

treating both trajectories from the incomparable pair equally,

i.e., I(τ1 � τ2) = I(τ2 � τ1) = 0.5. With this small but

important augmentation to the preference indicator function,

incomparable trajectory pairs are efficiently utilized for: 1)

better reward space exploration: preference approaching 0.5

as expected in Fig. 4a; 2) more samples utilized for reward

model update: all the 10, 000 samples from the training set

participate in the loss function minimization in Fig. 4b, and

3) much better treatment outcomes: more than 30% survival

rate achieved after the model converges in Fig. 4c9.

E. Correlation with Treatment Goals (RQ2)

Although resulting in suboptimal treatment outcomes, hand-

crafted rewards are closely connected with the key factors

that the treatment goal has considered. For instance, −1/+1
assigned to trajectories with death/survival outcomes for goal

CE, a linear weighted sum of survival status, tumor and

toxicity for goal CE&OF-II, etc. On contrary, whether the

inferred rewards in preference-based RL are correlated to

human’s treatment goal is unclear, since the two are indirectly

connected by preference. Therefore, we study how well the

preference-based reward matches humans’ actual treatment in-

tentions by visualizing the expected return of inferred rewards

and important factors from treatment goals.

a) Training: During training AbRM for Cancer experi-

ments, we can observe from Fig. 4d, that the rising trend of

the expected return matches the improving Survival Rate quite

well, although the parameters of the reward and policy model

are being updated simultaneously. For Sepsis experiments, we

also observe a positive correlation between the expected return

and survival rate in Fig. 2d and 2e.

b) Testing: After the model converges, we demonstrate

the correlation between expected return of inferred rewards

and treatment outcomes in Fig. 4e. Under different treatment
goals, the reward model is able to prioritize the treatment

outcome over other side effects, so that treatment trajectories

leading to death outcomes always have extremely low expected

return (approaching 0) while those saving subjects’ lives usu-

ally get much higher expected return. The expected return for

trajectories with survival outcomes further shows their correla-

tion with side effect mitigation goals in Fig. 4f, 4g and 4h. The

reward function can not only distinguish trajectories leading

to different survival statuses (green dots are far away from

red dots), but also differentiate trajectories with same survival

outcomes but different negative impacts: 1) the expected return

is negatively proportional to the sum of tumor and toxicity for

goal CE&OF-I in Fig. 4f; 2) when the two goals are competing

with each other for goal CE&OF-II, we can still observe

clear decreasing trend from expected return when toxicity

level increases in Fig. 4h. Based on the above analysis, we

conclude that the rewards inferred from preference are highly

9All the reported results of preference-based RL models AbRM and SbRM
in this paper take incomparable trajectories into consideration as opposed to
previous works.



Fig. 4: Cancer dosage recommendation: (a)(b)(c) Comparison between utilizing and disregarding incomparable trajectories to

infer rewards; (d): Highly-correlated expected return of inferred reward and survival rate during training; (e)(f)(g)(h): Correlation

between expected return of inferred reward and different treatment goals during testing.

(a) Predicted Preferences (CE) (b) #Samples by Reward Model (CE)
(c) Treatment Outcomes (CE) (d) AbRM Training (CE)

(e) AbRM Expected Return & Survivals (f) AbRM for CE&OF-I (g) AbRM for CE&OF-II: Tumor (h) AbRM for CE&OF-II: Toxicity

correlated to different treatment goals, and can prioritize the

most important one (i.e., maximizing survival rate) from

others (i.e., mitigating diverse side effects), which is lacking in

hand-engineered rewards. Similar conclusions can be obtained

from model SbRM (without visualizations here due to space

constraints).

F. Reward Transferability (RQ3)

According to Eq. 1, the probability of preferring trajectory

τ depends exponentially on the value of the discounted sum

of the reward over the length of the trajectory. With treatment
goal and trajectory length fixed, a well-trained reward model is

supposed to keep its capability of distinguishing the trajectory

more aligned with human’s intention from the other, when

some experiment settings vary in another scenario. We there-

fore investigate the transferability capability of preference-

based rewards by extending every blood purification operation

for septic subjects to 4 hours and observing the performance

of a reward model which has been pre-trained on the 2-hour

operation setting. As expected in Fig. 2f and 2g, the pre-trained

reward function provides higher initial survival rate compared

with learning rewards from scratch, which proves its trans-

ferability in assigning higher rewards to preferred treatment

trajectories in similar but different application scenarios. This

signifies a potential for faster convergence and reduced training

cost when the proposed preference-based RL framework is

adapted from simulation to the real world.

G. Agent Design Guidelines (RQ4)

As introduced in Algorithm 1, the proposed preference-

based RL framework adopts two RL agents controlled by

different parameters to learn the preference-based reward. We

therefore study the influence of different agent designs on

Fig. 5: Cancer dosage recommendation: Effects of distinct

agent designs for reward inference on performance with dif-

ferent treatment goals. Agents learning from preference-based

reward is denoted by Pref and hand-crafted reward by Hand.

We use Twin to indicate two agents with different parameters

while Single for shared parameters. Rand and Const represent

two baselines: Random and Constant Best.

reward approximation and the resulting performance. Specif-

ically, the reward function is estimated to approximate the

preference over trajectories, among which the first trajectory

is performed by one RL agent learning from preference-



based reward, while the second trajectory can be executed

by different agent types. First of all, the survival rate curves

shown in Fig. 5 empirically prove the effectiveness of the

current design of two different RL agents both learning from

preference-based rewards. Based on the descending order of

performance from both Agent 0 and Agent 1 in Fig. 5, we

can observe that the performance ranking of agents (Agent
0) learning from preference-based reward: Pref&Pref(Twin)
> Pref&Hand > Pref&Const > Pref&Rand, is consistent

with their competitor’s (Agent 1) ranking listed in Table I:

AbRM/SbRM > Single-objective RL > Constant Best (0.4) >
Random. We therefore attribute the success of the preference-

based RL framework to the preference over trajectories from

equally competitive agents, which leads to more accurate

reward estimation, better and more competitive policies from

both agents, and continues till both agent and reward models

converge. Besides, we also notice a drop in performance

when two preference-based RL agents share the same network.

Since the diversity in trajectories now mainly comes from

stochasticity in the simulation platform, we suspect that the

performance suffers due to a lack of adequate exploration.

V. CONCLUSION

To obtain optimal treatment policies based on human’s

diverse treatment goals, we investigate the performance of the

preference-based reinforcement learning approaches. Specifi-

cally, the preference over two treatment trajectories for one

sampled subject is evaluated according to the human’s treat-
ment goal and the reward is estimated based on the preference.

With the constructed simulation platform, we systematically

examine the preference-based RL framework and observe

its high performance and close correlation between inferred

rewards and treatment goals. Further, we explore reward

transferability and present an agent design study for a deeper

understanding in designing preference-based RL approaches

and to better aid clinicians with useful treatment strategies.
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