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Introduction

@ How to learn to classify objects from images?
@ What algorithms to use?

@ How to scale up these algorithms?
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Classification

Dataset D = {x{), y()},_; .y with x() € RP and labels y() € RP
Make accurate prediction § on unseen data point x

Classifier (parameters @) approximates label as: y =~ y = F(x;0)

Classifier learns parameters (0) from data D to minimize a
pre-specified loss function
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Neuron

a=f(w'x+b)

o w € R" = Weight vector
@ b € R = Scalar bias
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Classifier: Neural Network
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For each layer,
T . _
z = (W/) x|+ by; a = f(z/)
o W! e Rm-1%m = Weight vector
@ b; € R™ = Scalar bias
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© Gradient Descent
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Gradient Descent

Minimize the Mean-Squared Error loss:

N
1 . .
Lyse() = m E (y(’) _ f(X(l);a))Z
i=1

Algorithm: Gradient Descent
Q Initialize all weights () randomly with small values close to 0.

@ Repeat until convergence {

OLmsE

Vke{l,2,...K
aek {77 7}

Gk ::Hk—a

}

Minibatch gradient descent considers a subset of examples
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© Forward Propagation and Backpropagation
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Forward Propagation

Algorithm 3 Forward Propagation

Input: Example x, parameters [Wya.1y, by2.1}]
Output: z;(z),a;(z) Vi=1:1L

z1(x) = z,01(x) =2
for!=2:Ldo
Zl(il,‘> = (Wl)Tal_l(cc) + bl
ai(z) =o0(z)
end for
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Backpropagation

Algorithm 4 Backpropagation

Input: Example z, label y, parameters [Wo.1.}, by2.1}]

Output: Derivatives {MM SE Y 9.1, {8 i

Compute z;(x), a;(z) VI =1: L with a forward pass

0p = 2LusE o /(7 (x))

dar,
for! =L :2do
BﬁaAglsE = 5[
2pse = a1
o1-1 = (Wid;) o 0’ (211 ()
end for
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@ Parallel Gradient Descent
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Parallelizing Gradient Descent

Two ways to parallelize:

o Parallelize Gradient Descent:
Derivative of the loss function has the following form:

OLmse _ Of (x;; 0)
90, NZ OG0 =59, 90,

Distribute training examples, compute partial gradients, sum up
partial gradients

o Parallelize Backpropagation:
Parallelize matrix vector multiplications in forward propagation and
backpropagation algorithms
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MNIST dataset

@ 28x28 images of handwritten digits

@ 50,000 training examples, 10,000 test examples, 10,000 validation
examples

o Labels: 0 to 9 (one-hot encoding)
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Experiments

@ Network structures

# Layers # Nodes # Num
(In,Hidden,Out) | (In,Hidden,Out) Params

Networkl 1,11 784,1024,10 800,000
Network2 1,21 784,1024,1024,10 | 1,860,000

Serial, Parallelize over examples (Pthreads, CUDA)
Serial (BLAS), Parallelize matrix computations (BLAS)
Serial (Keras:Theano), Parallel (Keras:Theano), GPU (Keras:Theano)

Analyze time per epoch, gigaflops for each implementation
Analyze speedup from parallelization over serial counterparts
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© Results and analysis
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Results - Time per Epoch

Net-2h (Effect of batch size on performance - seconds)
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Results - Gigaflops

Net-2h (Effect of batch on performance - GFLOPS)
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Results - Speedup

Net-2h (Speedup over the respective serial implementation)
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Analysis

Our implementation

o Parallel computing average speedup ~ 10
e Training time decreases as minibatch size decreases

e BLAS

o Parallelizing each matrix vector product gives even faster results
o Speedup independent of batch size, but less than our implementation

e CUDA

e Our CUDA implementation gives about ~ 20x speedup
o If # neurons per layer are not perfect multiple of 32 then some threads
do not participate in computation

@ Theano

e Apparently combines both types of parallelization
o Theano CUDA scales very fast with batch size
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Future Work

Combine the two parallelization techniques: Split training examples

amongst threads, further hierarchically parallelize matrix computations for
each individual example.
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Thank you

Questions?
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