
Parallel Gradient Descent for Multilayer Feedforward Neural Networks

Nitin Kamra NKAMRA@USC.EDU

Department of Computer Science, University of Southern California

Palash Goyal PALASHGO@USC.EDU

Department of Computer Science, University of Southern California

Sungyong Seo SUNGYONS@USC.EDU

Department of Computer Science, University of Southern California

Vasileios Zois VZOIS@USC.EDU

Department of Computer Science, University of Southern California

Abstract
We present a parallel approach to classification
using neural networks as the hypothesis class.
Neural networks can have millions of parameters
and learning the optimum value of all parame-
ters from huge datasets in a serial implementa-
tion can be a very time consuming task. In this
work, we have implemented parallel gradient de-
scent to train multilayer feedforward neural net-
works. Specifically, we analyze two kinds of par-
allelization techniques: (a) parallel processing of
multiple training examples across several threads
and (b) parallelizing matrix operations for a sin-
gle training example. We have implemented a se-
rial minibatch gradient descent algorithm, its par-
allel multithreaded version (using Pthread library
in C++), a BLAS parallelized version and a CUDA
implementation on a GPU. All implementations
have been compared and analyzed for the speedup
obtained across various network architectures and
increasing problem sizes. We have performed
our tests on the benchmark dataset: MNIST, and
finally also compared our implementations with
the corresponding implementations in the state-of-
the-art deep learning library: Theano.

1. Introduction
Artificial neural networks are powerful machine learning
tools used in many applications including but not limited to
search engines, fraud detection, image classification, diag-
nostic medicine applications and stock market prediction.

CSCI-503: Parallel Programming, Fall 2016, Final Project. Copy-
right 2016 by the author(s).

Prior to application, neural networks undergo a training
phase which is known to be very computationally inten-
sive. This is primarily because the prevailing neural network
architectures are implemented using several hidden layers,
with each one consisting of thousands to millions of neurons
in order to generalize well on diverse inputs. In this case, the
resulting number of parameters that need to be trained are in
the order of millions.

Furthermore, achieving high accuracy requires considering
a large number of training examples (usually in the order
of millions). For this reason training a neural network is
both a data and resource intensive operation. This calls for
efforts to parallelize the training process on multi-core ma-
chines and/or across multiple machines.

Currently Minibatch Gradient Descent (henceforth called
MGD) is the most commonly used optimization algorithm
used to train neural networks in supervised settings. It
is implemented in a layerwise-recursive fashion which in-
volves computing the neural network output (forward prop-
agation) and updating parameters by computing gradient val-
ues (backpropagation).

In this paper, we have implemented parallel minibatch gradi-
ent descent to train multilayer feedforward neural networks
for classification tasks. The rest of the paper is organized
as follows: section 2 presents a description of supervised
learning tasks and neural networks as classifiers. Section 3
describes the conventional gradient descent algorithm and
its minibatch variant. It also describes the forward propa-
gation and the backpropagation algorithms for neural net-
works. Section 4 discusses approaches to parallelization:
(a) by distributing multiple examples across several threads,
and (b) by performing matrix computations in parallel. It
also discusses the implementation of parallel gradient de-
scent on a GPU with CUDA. Section 5 describes our dataset
and the experiments we have performed. Section 6 presents



Parallel Gradient Descent for Multilayer Feedforward Neural Networks

our results obtained for these experiments and analyzes the
speedup obtained for various network architectures and in-
creasing problem sizes. It also presents a comparison with
the same algorithms implemented using a state-of-the-art
deep learning library Theano. Section 7 concludes the pa-
per by discussing some potential applications and section 8
explores some potentially interesting future directions.

2. Problem Description
We first formally describe a classification task in the super-
vised learning setting. Then we describe a feedforward neu-
ral network with fully connected layers. Feedforward neu-
ral networks act as function approximators in classification
tasks.

2.1. Classification Problem

Given a dataset D = {x(i), y(i)}i=1:N with data points
x(i) ∈ RD and labels y(i) ∈ RP , the classification task in-
volves making an accurate label prediction ŷ on a previously
unseen data point x. We approximate the label as a func-
tion of the datapoint using a classifier (a feedforward neural
network here) with parameters θ = {θk}k=1:K as follows:
y ≈ ŷ = f(x; θ). The classifier (neural network) learns the
function f from the training data D by tuning its parameters
(θ) to minimize a pre-specified loss function, for instance,
the Mean-Squared Error loss:

LMSE(θ) =
1

N

N∑
i=1

(y(i) − f(x(i); θ))2 (1)

This minimization can be carried out using optimiza-
tion algorithms like Gradient Descent, Newton’s method,
Levenberg-Marquardt algorithm etc. Though Newton’s
method is a second-order optimization technique, it requires
the computation of the hessian of the objective function
which is very prohibitive for a large number of parameters
like in a neural network. Levenberg-Marquardt algorithm
also requires computing matrices of the size of hessian and
can be very slow for classifiers with a large number of pa-
rameters. Currently Gradient Descent is the most success-
ful technique to train huge neural networks with millions of
parameters, since it provides a decent tradeoff between con-
vergence speed and memory requirements. We will describe
gradient descent in section 3.

2.2. Feedforward Neural Networks

Neural networks are mathematical models partly inspired by
the workings of the human brain. The basic unit of feedfor-
ward neural networks is a neuron (figure 1). A single neuron
generally takes a vector of inputs x ∈ Rn and outputs a sin-
gle scalar a ∈ R (called its activation). Generally the func-
tion computed by a neuron comprises of linear transforma-
tion on the input vector followed by a pointwise non-linear

Figure 1. A neuron

activation function:

a = f(wTx+ b) (2)

where w ∈ Rn is called the weight vector and b ∈ R is the
scalar bias of the neuron. Many different kinds of activation
functions have been studied and used according to the task
at hand e.g. linear, sigmoid, tanh, ReLU etc. We will use
the sigmoid and linear(f(z) = z) activation functions in our
implementation.

Figure 2. The sigmoid function (Baydin)

The sigmoid function is shown in figure 2 and is defined as
follows:

σ(z) =
1

1 + e−z
(3)

A feedforward neural network is a directed acyclic graph
G = (V,E) each of whose vertices v ∈ V is a neuron and
every edge (u, v) ∈ E represents the output of neuron u
going as an input to neuron v. In general to have a more
concrete structure the graph G is organized into a layered
structure and we will only use layered feedforward neural
networks in our implementations.

A feedforward network with L layers comprises of a single
input layer, L−2 hidden layers (their outputs are not directly
observed) and a final output layer. Let the input of the neural
network be x ∈ Rnin and the output be y ∈ Rnout . The lth

layer has nl neurons and the full network has n =
∑L
l=1 nl

neurons.



Parallel Gradient Descent for Multilayer Feedforward Neural Networks

Figure 3. A neural network with one hidden layer

The input to the first layer (denoted x1) is x and the output
(activation) of the first layer is denoted a1 ∈ Rnin . The in-
put layer contains n1 = nin dummy neurons each of which
takes a single scalar input nin and passes it unchanged i.e.
a1 = x1 = x (linear activation function).

All subsequent layers l ∈ {2, 3, ..., L} give an output al ∈
Rnl and take an input xl = al−1 ∈ Rnl−1 . The final network
output y is given by aL ∈ RnL(nL = nout). Each of these
layers applies a linear transformation to its input followed by
a pointwise non-linear activation function i.e. for each layer:

zl = (Wl)
Txl + bl (4)

al = f(zl) (5)

where W l ∈ Rnl−1×nl is the weight matrix of the layer and
bl ∈ Rnl is the bias vector. The function f(·) is the pointwise
activation function which applies to each component of the
zl vector and we will use sigmoid as our activation function
for the classification task.

An example network with one hidden layer is shown in fig-
ure 3.

3. Gradient Descent and Backpropagation
As explained in section 2.1, classifiers try to choose their
parameters (θ) in order to minimize some pre-specified loss
function. In this work, we will work with the Mean-squared
Error loss function as defined in equation 1.

3.1. Batch Gradient Descent

To optimize the loss function, we will use the Gradient De-
scent algorithm which in its most basic form takes the deriva-
tive of the cost function w.r.t. all the parameter values and
updates the parameters by a value proportional to this gradi-
ent and opposite in sign. A naive implementation of Gradient
Descent is as shown in algorithm 1.

Algorithm 1 Batch Gradient Descent

Input: Dataset D = {x(i), y(i)}i=1:N , Step Size α, Max
Epochs Nepoch
Output: Parameters {θk}k=1:K

Initialize θ randomly with small real numbers
ep := 0
repeat
ep := ep+ 1
for k ∈ {1 : K} do

∂LMSE

∂θk
= 1

N

∑N
i=1(y(i) − f(x(i); θ))∂f(x

(i);θ)
∂θk

end for
θk := θk − α∂LMSE

∂θk
∀k ∈ {1 : K}

until ep ≥ Nepoch

Algorithm 2 Minibatch Gradient Descent

Input: Dataset D = {x(i), y(i)}i=1:N , Step Size α, Max
Epochs Nepoch, Batch Size B
Output: Parameters {θk}k=1:K

Initialize θ randomly with small real numbers
ep := 0
repeat
ep := ep+ 1
Divide D into batches {Bj}j=1:NB

of size B each
for j ∈ {1 : NB } do

for k ∈ {1 : K} do
∂LMSE

∂θk
= 1

B

∑
i∈Bj

(y(i) − f(x(i); θ))∂f(x
(i);θ)

∂θk
end for
θk := θk − α∂LMSE

∂θk
∀k ∈ {1 : K}

end for
until ep ≥ Nepoch

3.2. Minibatch Gradient Descent

Note that the derivative of LMSE in algorithm 1 requires us
to sum over all the training examples. This makes gradi-
ent computation, the biggest bottleneck for many supervised
learning tasks on huge data sets. One solution to this prob-
lem is to approximate the gradient with a smaller batch of
training examples selected from the full dataset, so that more
updates can be made in a smaller amount of time. The re-
sulting algorithm is called Minibatch Gradient Descent (ab-
breviated as MGD) and is shown in algorithm 2.

3.3. Backpropagation

It can be seen that a major subroutine in algorithms 1 and 2 is
the computation of gradient of the loss function for a single
training example.

Since the neural network is a very complicated function
comprising of many layered operations, the gradient of loss
function is not trivial to compute. For fully connected feed-



Parallel Gradient Descent for Multilayer Feedforward Neural Networks

Algorithm 3 Forward Propagation
Input: Example x, parameters [W{2:L}, b{2:L}]
Output: zl(x), al(x) ∀l = 1 : L

z1(x) := x, a1(x) := x
for l = 2 : L do
zl(x) = (Wl)

Tal−1(x) + bl
al(x) = σ(zl)

end for

Algorithm 4 Backpropagation
Input: Example x, label y, parameters [W{2:L}, b{2:L}]

Output: Derivatives {∂LMSE

∂bl
}l=2:L, {∂LMSE

∂Wl
}l=2:L

Compute zl(x), al(x) ∀l = 1 : L with a forward pass
δL := ∂LMSE

∂aL
◦ σ′(zL(x))

for l = L : 2 do
∂LMSE

∂bl
:= δl

∂LMSE

∂Wl
:= al−1δ

T
l

δl−1 := (Wlδl) ◦ σ′(zl−1(x))
end for

forward neural networks, first a forward pass is made to com-
pute the value of neural network activations for all layers as
shown in algorithm 3. Then the gradient is computed by
starting from the output layer and backpropagating gradient
information for previous layers using the derivative chain-
rule.

This procedure results in the famous backpropagation al-
gorithm to compute the gradient described briefly as fol-
lows: Let x be a training example with label y. Our feed-
forward neural network has an input layer and L − 1 fully
connected layers with sigmoid activation function. The pa-
rameters θ are all the neural network parameters i.e. θ =
[W{2:L}, b{2:L}]. We will use the Mean-Squared Error loss
function:

LMSE([W{2:L}, b{2:L}]) =
1

N

N∑
i=1

(y − aL(x))2 (6)

where aL(x) is the activation of the output layer when the in-
put to the neural network is x and the network parameters are
[W{2:L}, b{2:L}]. The backpropagation algorithm first com-
putes errors δl ∈ Rnl and then computes the derivative of
loss function with respect to parameters as shown in algo-
rithm 4 (Nielson, 2015). Note that a ◦ b is the elementwise
product between vectors a and b.

4. Parallel Gradient Descent
Even with minibatches, the gradient computation can still
be a bottleneck for most training algorithms. There are two
potential ways to get rid of this problem and we describe
them in the subsequent subsections.

Algorithm 5 Parallel Minibatch Gradient Descent

Input: Dataset D = {x(i), y(i)}i=1:N , Step Size α, Max
Epochs Nepoch, Batch Size B, Num Threads T
Output: Parameters {θk}k=1:K

Initialize θ randomly with small real numbers
ep := 0
repeat
ep := ep+ 1
Divide D into batches {Bj}j=1:NB

of size B each
for j ∈ {1 : NB } do

Divide Bj into thread-batches {Bjt}t=1:BT
of size B

T
Thread ‘t’ is forked:
for k ∈ {1 : K} do

∂LMSE

∂θk

∣∣
t

:=
∑
i∈Bjt

(y(i) − f(x(i); θ))∂f(x
(i);θ)

∂θk
end for
Thread ‘t’ joins back ’main’
for k ∈ {1 : K} do

∂LMSE

∂θk
:= 1

B

∑
t
∂LMSE

∂θk

∣∣
t

end for
θk := θk − α∂LMSE

∂θk
∀k ∈ {1 : K}

end for
until ep ≥ Nepoch

4.1. Parallel Minibatch Gradient Descent

Observe that the gradient is a sum of partial gradients with
respect to the individual training examples. So one way
to parallelize gradient computation could be by distributing
training examples of a minibatch across many processes, let-
ting them compute a partial gradient over their own training
examples and then summing up these partial gradients to get
the approximate minibatch gradient. This approach results
in a procedure shown in algorithm 5.

4.2. Parallelizing Matrix Computations

An alternative way to parallelize the gradient computation
process can be by parallelizing individual steps of backprop-
agation (algorithms 3 and 4). Note that the forward prop-
agation and backpropagation algorithms comprise various
matrix vector multiplications which can be individually par-
allelized across multiple threads of execution. Parallelized
matrix-vector multiplications are already efficiently imple-
mented in various linear algebra libraries and we will use
the BLAS library to implement this second method of paral-
lelization.

4.3. Parallelizing on GPUs

Graphics Processing Units (GPUs) are massively parallel
processors for efficiently executing certain operations in-
cluding but not limited to vector-vector addition, matrix-
vector and matrix-matrix multiplication. Moreover, because



Parallel Gradient Descent for Multilayer Feedforward Neural Networks

GPUs consist of many throughput oriented multiprocessors
that follow the Single Instruction Multiple Data (SIMD) ex-
ecution model, they can be very useful for applications that
require processing large amount of data.

Backpropagation can be accelerated on a GPU using a se-
ries of matrix-matrix multiplication and addition kernels.
Our implementation relies on several variations of the tiled
matrix-matrix multiplication kernel which is available in
CUDA samples. The original problem is decomposed in 5
kernel executions per training example which include the
computation of the activation values, the calculation of the
output error delta and the hidden layer delta values, the cal-
culation of the derivative activation values and the final sum-
mation of weights. In the case of computing the delta val-
ues, we included an optimization when the sigmoid function
is used which avoids recomputing the activation values by
deriving the derivative of the activation function from the
values of the feed forward step. Also, when computing the
final ∆W that is used to update the weights for each layer,
our initial kernel was incurring many shared memory bank
conflicts during computation. To improve performance, we
chose to invert the order in which tiles are stored in shared
memory. This way only a single bank conflict occurs when
loading data into shared memory while there are zero bank
conflicts during the computation step.

5. Experimental setup
In this section, we first describe the dataset used for our ex-
periments and the corresponding classification task. We then
delineate the networks used for each of these datasets and the
procedure to determine the values of hyperparameters. This
is followed by a description of the evaluation metric of the
speedup. All the algorithms were implemented in C++. The
reported results were obtained on a Ubuntu 14.04.4 LTS sys-
tem with 32 cores, 128 GB RAM and a clock speed of 2.6
GHz. The GPU used was Nvidia Tesla K40C.

5.1. Dataset description

We test the speedups achieved by the parallel implementa-
tion on the benchmark dataset: MNIST (Lecun & Cortes). It
has been widely used by the machine learning community to
compare different learning algorithms.

MNIST is an image database of handwritten digits, com-
monly used for training various image processing systems
(Figure 4). The task is to classify the digit (0− 9) in the im-
age. This dataset was derived from NIST’s datasets and was
formed by mixing the samples from NIST. This mixing was
done because the training and testing datasets in the origi-
nal NIST dataset were obtained from two different groups
of people (Census Bureau employees and high school stu-
dents). The dataset consists of 60,000 training images and
10,000 testing images, each of size 28 × 28. In our exper-

Figure 4. MNIST dataset

iments, we further divided the training set into training and
validation in 5:1 ratio in order to determine suitable values
for the hyperparameters.

5.2. Network details

We used two different configurations of neural networks:

• Net-1h: 3 layered network - input (784), one hidden
layer (1024) and output layer (10).

• Net-2h: 4 layered network - input (784), two hidden
layers (1024 each) and output layer (10).

Both networks had linear activations for input layer and sig-
moid activations for all subsequent layers. The dense layer
for each network was initialized using glorot uniform distri-
bution (Glorot & Bengio, 2010) and the biases were initial-
ized with zeros.

5.3. Hyperparameter selection

Hyperparameter selection (model selection) is an important
problem in machine learning which involves choosing opti-
mal values for hyperparameters that generalize well on test
data.

We chose our learning rate hyperparameter by doing a grid
search on the grid [0.001, 0.002, 0.01, 0.1, 0.5, 1.0]. As men-
tioned above, we divide the training set into training and val-
idation (5:1 split). We use different learning rates defined
in the grid for learning and test the accuracy on validation
data. The rate which gives the highest accuracy on valida-
tion is chosen and used to evaluate the performance of the
algorithm on test data.

5.4. Experiments

In this paper, we implement different versions of gradi-
ent descent algorithm for training neural networks. Some
of them used our self-written (slow) linear algebra library
(called LINALGLIB henceforth), and others used BLAS.
All parallel multicore implementations used 32 execution



Parallel Gradient Descent for Multilayer Feedforward Neural Networks

threads. Keras (Chollet, 2016) and Theano (Bastien et al.,
2012; Bergstra et al., 2010) based implementations also use
BLAS. The implementations are as follows:

• Naive Serial, Multicore Parallel, GPU Parallel

• Fast Serial, Fast Parallel

• Theano Serial, Theano Parallel, Theano GPU

Detailed description of implementations is given in table 1.

Name Parallelism Lin. Algebra Platform
Library

Naive - LINALGLIB C++
Serial

Multicore Training LINALGLIB Pthreads,
Parallel examples C++

GPU Training LINALGLIB CUDA,
Parallel examples C++

Fast - BLAS C++
Serial
Fast Matrix BLAS C++

Parallel operations
Theano - BLAS Keras,
Serial Theano

Theano Training ex., BLAS Keras,
Parallel Matrix ops Theano
Theano Training ex., BLAS Keras,
GPU Matrix ops Theano

Table 1. Detailed description of implementations

5.5. Evaluation methodology

To evaluate our approach and quantify the usefulness of par-
allelization, we use speedup as our primary measure. We
compute speedup for each parallel implementation with re-
spect to its serial counterpart on the same network configura-
tion. For each parallel implementation we also compute the
running time per training epoch (in seconds) and the amount
of computation per epoch (in gigaflops) since speedup alone
may sometimes be misleading and does not capture the effi-
ciency of parallel implementation. These measures are inde-
pendent of serial implementation and can be used to supple-
ment the speedup metric.

6. Results and Analysis
All our networks give us about 93% to 97.8% classification
accuracy on validation and test sets, but in this work we did
not focus on getting a better classification accuracy. Instead
our major focus was to analyze the speedup obtained by par-
allelization, and the gigaflops of computation obtained for
different batch sizes.

Figures 5 and 7 show bar plots of the time per epoch (in
seconds, called TPE henceforth) by all implementations as

Figure 5. Time per epoch for Net-1h

Figure 6. GFLOPS for Net-1h

the batch size increases. Figures 6 and 8 show the corre-
sponding bar plots for amount of computation performed
per epoch (in gigaflops, called GFLOPS henceforth). The
speedups (called SUP henceforth) obtained for Net-1h and
Net-2h are shown in figures 9 and 10 respectively for vari-
ous batch sizes.

The following points can be immediately observed from the
figures:

• TPE and GFLOPS are constant for serial implementa-
tions regardless of batch sizes, which is to be expected
because serial implementations access all data sequen-
tially regardless of batch size.

• TPE decreases and GFLOPS increases with increase
in batch size for parallel and GPU implementations,
which parallelize on training examples. This is ex-
pected since having more training examples in a batch
reduce the thread creation overheads.

• GPUs have a huge number of parallel cores and threads



Parallel Gradient Descent for Multilayer Feedforward Neural Networks

Figure 7. Time per epoch for Net-2h

Figure 8. GFLOPS for Net-2h

per core and hence they clearly dominate over the mul-
ticore parallel implementations at all values of batch
sizes and network configurations.

• BLAS parallel implementations do not exhibit a change
in TPE or GFLOPS with increasing batch sizes, since
they do not parallelize on minibatches.

• Multicore Parallel and CUDA GPU implementations
give an average speedup of approximately 10 and 25
respectively.

• Theano serial and BLAS serial implementations are
very efficient already and hence their parallel coun-
terparts demonstrate a smaller speedup, although the
parallel counterparts parallelizing on matrix computa-
tions clearly win over the parallel implementations par-
allelizing on training examples, in terms of GFLOPS.

• Theano implementations (serial, parallel and GPU) use
both types of parallelization and hence demonstrate
lower TPE than all their corresponding counterparts for

Figure 9. Speedup for Net-1h

Figure 10. Speedup for Net-2h

large batch sizes where efficiency of parallelized matrix
operations matters a lot.

• For smaller batch sizes around 128, our CUDA imple-
mentation dominates over Theano GPU because paral-
lelization of matrix computations have a larger over-
head at such scales with smaller matrix sizes. This is
also reflected in Theano GPU’s speedup, which grows
extremely fast as batch size grows (figures 9 and 10).

BLAS As Basic Linear Algebra Subprograms, BLAS has
been a crucial workhorse in heavy numerical computing. By
replacing our self-built LINALGLIB with BLAS, we ob-
tained hugely improved results. Note that the execution time
of BLAS doesn’t depend on the number of threads because
it parallelizes each Matrix-vector product and hence each
thread executes different parts of the same example. The
serial implementation is still a bit slower than Theano but is
faster than our previous implementation by about 10 times.

GPU Bottlenecks Ideally the number of overheads (alloca-
tion/reduction) should be monotonically reduced by increas-



Parallel Gradient Descent for Multilayer Feedforward Neural Networks

ing the size of the batch. However, our experiment results
show that there are some performance bottlenecks. In our
implementation, shared memory bank conflicts which re-
duce the parallelism when threads access the shared mem-
ory appear when the number of batches increase. When the
dimensions (i.e. number of neurons between layers) of the
neural network are not perfect multiples of 32 then some
threads do not participate in the computation which results
in degraded parallelism.

Overall, we demonstrate that the parallel computation is
significantly faster than the serial computation if we uti-
lize multiple threads for processing many examples or do
matrix-vector computations in parallel. By dividing train-
ing datasets into larger mini batches, we are able to perform
better due to reduced parallelization overheads.

7. Conclusion
In this paper, we have explored techniques to parallelize
training of multilayer feedforward neural networks by (a)
splitting training examples among multiple threads of exe-
cution, and (b) by parallelizing matrix computations for a
single training example. We have obtained significant per-
formance gains by parallelizing the training process both by
using multiple cores and also on a GPU. We have demon-
strated a ×10 speedup with multiple cores and ×25 on a
GPU by parallelizing across multiple training examples, and
a heavy increase in GFLOPS by parallelizing matrix compu-
tations for a single training example. Our parallelized gra-
dient descent implementation can find good usage for many
real-time processing tasks. Typical examples include but are
not limited to:

• Real-time online control of robotic manipulators which
learn online from incoming sensory data.

• Self-driving cars which need to do online object recog-
nition in real-time using deep neural networks.

• Speech translators which deploy deep recurrent neural
networks for translation in real-time.

8. Future Work
It would be an interesting idea to combine the two paral-
lelization techniques that we have explored in this paper as
future work. Specifically, it might be possible to speed up the
training even more by splitting training examples in parallel,
and then further hierarchically parallelizing matrix compu-
tations for each individual example.

References
Bastien, Frédéric, Lamblin, Pascal, Pascanu, Razvan,

Bergstra, James, Goodfellow, Ian J., Bergeron, Arnaud,
Bouchard, Nicolas, and Bengio, Yoshua. Theano: new

features and speed improvements. Deep Learning and Un-
supervised Feature Learning NIPS 2012 Workshop, 2012.

Baydin, Atlm Gne. Neural networks. URL http:
//diffsharp.github.io/DiffSharp/img/
examples-neuralnetworks-neuron.png.

Bergstra, James, Breuleux, Olivier, Bastien, Frédéric,
Lamblin, Pascal, Pascanu, Razvan, Desjardins, Guil-
laume, Turian, Joseph, Warde-Farley, David, and Bengio,
Yoshua. Theano: a CPU and GPU math expression com-
piler. In Proceedings of the Python for Scientific Comput-
ing Conference (SciPy), june 2010.

Chollet, Franois. keras. https://github.com/
fchollet/keras, 2016.

Glorot, Xavier and Bengio, Yoshua. Understanding the diffi-
culty of training deep feedforward neural networks. In In-
ternational conference on artificial intelligence and statis-
tics, pp. 249–256, 2010.

Lecun, Yann and Cortes, Corinna. The mnist database
of handwritten digits. URL http://yann.lecun.
com/exdb/mnist/.

Nielson, Michael. Neural Networks and Deep
Learning. Determination Press, 2015. URL
http://neuralnetworksanddeeplearning.
com/index.html.

http://diffsharp.github.io/DiffSharp/img/examples-neuralnetworks-neuron.png
http://diffsharp.github.io/DiffSharp/img/examples-neuralnetworks-neuron.png
http://diffsharp.github.io/DiffSharp/img/examples-neuralnetworks-neuron.png
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://neuralnetworksanddeeplearning.com/index.html
http://neuralnetworksanddeeplearning.com/index.html

