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Security games

Stackelberg Security Game (SSG)

A leader-follower game between a defender and opponent.

Payoff for players (rO and rD): decided by their joint actions.

Defender pure strategy: allocate resources to protect a subset of targets.

Opponent pure strategy: attack a target.
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Security games

SSG: Utilities and Policies

Mixed strategy (a.k.a. policy): Probability distribution over pure strategies.

Optimal defender strategy (πD): Maximizes her expected utility JD , given that the
attacker best responds to it.

Attacker’s best response (πO): An action or strategy that maximizes his expected
utility JO .

Zero-sum game: JD + JO = 0.
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Security games

Challenges

Previous work considers discrete player actions, even for games with continuous
space (through discretization) [1, 4, 5, 12].

Most approaches solve mixed integer linear programs to obtain Stackelberg
Equilibria, which rarely scale to big problems.

Other solutions rely on exploitable spatio-temporal structures of the problem and
cannot be generalized to handle general settings [8, 2, 13].
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Security games

Our major contributions

This work is a proof-of-concept showing that deep learning can be used to handle
difficult problems in security games.

This is part of ongoing work and provides encouraging results with a preliminary
version of our algorithm.

We present
Continuous space security game model: Infinite action sets over two-dimensional
continuous areas with asymmetric target distribution.
OptGradFP: General algorithm to optimize parametrized strategies (policies) in
continuous adversarial domains.
OptGradFP-NN: Application of OptGradFP using CNNs.
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Forest protection game

Forest protection game

Figure: Forest game with 5 guards and
5 lumberjacks visualized. Trees are
green dots, guards are blue dots with
enclosing blue circles showing radius
Rg and lumberjacks are red dots with
enclosing red circles showing Rl .

Game model:
Circular forest, prespecified arbitrary
tree distribution.
n lumberjacks move directly towards
center in a straight line, stop, chop
wood in radius Rl and return back.
m hidden guards attempt to ambush
lumberjacks.
Forest state: Summarized via
120× 120 grayscale image.

Defender action: pick m locations, one
for each guard to set ambush.

Opponent action: pick n chopping
locations, one for each lumberjack.
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Forest protection game

Forest protection game

Figure: Forest game with 5 guards and
5 lumberjacks visualized. Trees are
green dots, guards are blue dots with
enclosing blue circles showing radius
Rg and lumberjacks are red dots with
enclosing red circles showing Rl .

Rewards:
Guard ambushes lumberjacks within
Rg radius.
Ambushed lumberjack loses all wood
and pays penalty rpen.
Opponent utility (rO) = # trees
successfully stolen - total ambush
penalty incurred.
Defender utility (rD) = −rO .

Game play: Given a forest:
Defender gives m guard locations
Opponent gives n chopping locations
Game simulator returns (rD , rO)

By playing multiple times, defender
gets information via rewards and
optimizes her strategy.
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Algorithm: OptGradFP

Definitions

Policies (Mixed strategies):
Policy: Probability distribution over player’s actions given state (S).
Defender’s learnable policy πD : P(aD |S; wD).
Defender’s estimate of opponent’s policy πO : P(aO |S ; wO).
Opponent’s real policy: Best response to defender’s final policy (not πO).

Utilities:
Defender utility = JD(wD ,wO) = ES,aD ,aO [rD(S, aD , aO)]
Opponent’s utility: JO = −JD
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Algorithm: OptGradFP

Maximizing utilities

Both players want to maximize their utilities.

Defender deploys her policy first, without knowing opponent’s policy. Defender’s
optimization:

w∗
D = arg max

wD
min
wO

JD(wD ,wO) (1)

Opponent observes the defender’s policy and reacts with a best response.
Opponent’s optimization:

w∗
O = arg min

wO
JD(w∗

D ,wO) (2)

We approach these problems by taking a gradient optimization based approach.
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Algorithm: OptGradFP

Policy Gradient Theorem

Given a function f (·) and a random variable X ∼ p(x |θ).

Gradient of expected value of f (·) with respect to distribution parameters can be
computed using Policy Gradient Theorem [10] as:

∇θEX [f (X )] = EX [f (X )∇θ log p(X |θ)] (3)

Useful to compute gradients of players’ utilities w.r.t. policy parameters.
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Algorithm: OptGradFP

Approximating utility function gradients

Gradient of JD w.r.t. defender parameters wD can be found using policy gradient
theorem:

∇wD JD = ES,aD ,aO [∇wDπD(aD |S ; wD) rD ] (4)

Exact computation of above integral is prohibitive, but can be approximated from a
batch of B on-policy samples (w.r.t. πD) using the following unbiased estimator:

∇wD JD ≈
1

B

B∑
i=1

∇wDπD(aiD |S i ; wD) r iD (5)

Gradient of JO w.r.t. wO can be similarly approximated.
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Algorithm: OptGradFP

Best response to average strategy: Fictitious play

Directly responding to the other player’s strategy with a best response is not
appropriate since it causes sudden simultaneous changes to players’ policies. Both
players can diverge because of it.

Fictitious Play: Respond to the other player’s average strategy uptil now [6, 7].

Converges to Nash Equilibrium under various settings including two-player zero-sum
games [3].

In a zero-sum SSG, Fictitious Play converges to Stackelberg Equilibrium.

Emulate average play by storing past history of games in replay memories.
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Algorithm: OptGradFP

OptGradFP: Intuition

Parametrize players’ mixed strategies in continuous space (we use ConvNets).

Play games with players’ policy estimates and keep storing in replay memories.

Use games from players’ current policies and from previous policies (fictitious play)
to compute the gradient of utility w.r.t. current policy parameters (policy gradients).

Update NN policy with gradients to improve against other player’s average strategy.
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Algorithm: OptGradFP

Our algorithm: OptGradFP

Algorithm 1: OptGradFP

Initialize policy parameters wD and wO randomly;
Fill replay memories memD, memO of size E with randomly played games;
for ep in {0, . . . , epmax} do

Get game state S ;
Execute aD ∼ πD(·|S ; wD), aO ∼ πO(·|S ; wO);
Get rewards (rD , rO) and store {S , aD , aO , rD , rO} in memD, memO;
if ep % fD == 0 then

Get samples {S i , aiD , a
i
O , r

i
D , r

i
O}i∈[E ] from memD;

Replay all games S i , ãiD ∼ πD(·|S ; wD), aiO to obtain r̃ iD , r̃
i
O ;

wD := wD + αD
1+ep βD

1
E

∑E
i=1∇wDπD(ãiD |S i ; wD) r̃ iD ;

if ep % fO == 0 then
Get samples {S i , aiD , a

i
O , r

i
D , r

i
O}i∈[E ] from memO;

Replay all games S i , aiD , ã
i
O ∼ πO(·|S ; wD) to obtain r̃ iD , r̃

i
O ;

wO := wO + αO
1+ep βO

1
E

∑E
i=1∇wOπO(ãiO |S i ; wO) r̃ iO ;
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Algorithm: OptGradFP

OptGradFP-NN: Representing policies with ConvNets

We assume each coordinate (cylindrical: radius, angle) of aD , aO to be distributed
independently according to logit-normal distribution.

Our choice of logit-normal distribution meets the requirement of a continuous
distribution, differentiable w.r.t. its parameters and having bounded support (since
our action spaces are bounded and continuous).

Two separate ConvNets [9, 14] to learn the required means and standard deviations.

Figure: Defender’s policy as a CNN
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Algorithm: OptGradFP

OptGradFP-NN: Hyperparameter selection

Our OptGradFP implementation uses a replay memory size of E = 1000 samples,
maximum episodes epmax = 10000, learning rates αD = αO = 10−5, training rates
fD = fO = 50 and decays βD = βO = 0.045.

The architectures of all neural networks involved and all algorithm hyperparameters
were chosen by doing informal grid searches within appropriate intervals. For more
information on choosing convolutional neural network architectures, refer [11].
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Experiments and Results

Baselines

Baseline algorithms:

Cournot Adjustment (CA): Players sequentially best respond to each others’ policies.

StackGrad1 [1]: Opponent best responds, defender uses a soft policy gradient
update (but no fictitious play).

OptGradFP: Our method.

Other parameters:

We use m = 8 guards and n = 8 lumberjacks.

Ambush penalty rpen = 10, guard radius Rg = 0.1 and lumberjack radius
Rl = 0.04 < Rg .

1StackGrad uses best response computation for opponent in [1] (approximated by parametrized softmax
distribution). Since it is hard to compute the analytic best response to any policy for our domain, we use an
approximation to emulate the opponent’s best response: we play multiple games with random actions for the
opponent while drawing the defender’s actions from its current policy. The random action which gets the
highest reward against the defender’s policy is chosen as the best response action for the opponent.
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Experiments and Results

Training reward curves for defender

Figure: Average reward for all replayed games before every training iteration. OptGradFP offers
the maximum average utility. Note that the reward is averaged on the last E games for
OptGradFP, but only on fD games for CA and StackGrad. Hence, CA seems to approach
OptGradFP, but it does not truly respond well to the average response of the opponent.
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Experiments and Results

Opponent’s maximum average utility

Algorithm Max Util
CA 567.05

StackGrad 518.34
OptGradFP 499.15

Table: Maximum average utility 2 of the opponent.

OptGradFP offers the least maximum average utility to the opponent.

2Opponent’s maximum utility was computed approximately (computing actual values is extremely
prohibitive), by sampling 100 random opponent actions and 100 actions from the defender’s final policy. 10000
games were played with each combination of the defender’s and opponent’s actions and the opponent action
which led to the maximum reward for the opponent (averaged over all 100 defender actions) was assumed to
be the opponent’s final action.
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Experiments and Results

Policy visualization

(a) CA (b) StackGrad (c) OptGradFP

Figure: Visualization of defender’s policy. Blue dots show sampled positions for the guards.
Locations with many blue dots are the regions where the distribution is concentrated.

OptGradFP’s defender policy converges to well-spread concentric rings.

Other baselines find local regions to guard and leave a lot of space for lumberjacks
to go unambushed.

OptGradFP finds reasonable radii to place the rings (guards).
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Experiments and Results

Effect of fictitious play and replay memory

Figure: Policy visualization after removing replay memory

Disabled fictitious play with small replay memory (E = fD = fO), containing only
games sampled from current player policies.

Opponent’s best response utility: 555.58.

Defender policy not well spread out: no memory of previous moves.

Result: Trade-off between large memory (smooth convergence, replay bottleneck)
vs. small memory (fast, but non-optimal policy).
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Discussion and Future work

Discussion

Interpretation for the algorithms’ performance:

Cournot Adjustment:
Opponent runs from defender; defender keeps chasing (oscillatory reward curve).
Final defender policy localized due to lack of memory.

StackGrad:
Opponent adapts fast, while defender chases around, but never catches up (sudden
initial fall in the defender’s average reward curve).
Final defender policy highly localized due to lack of memory.

OptGradFP:
Soft steps for both players towards best response to each other’s average strategies
(averaged via replay memories).
Both players eventually converge to a good average response to each other.
Final defender policy well spread out into circular bands around the dense forest center.
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Discussion and Future work

Future work

Generalizing the model and algorithm to handle arbitrary shaped forest regions.

Training the network to respond to multiple distinct game states.

Extending to games played over time.
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Discussion and Future work

Thank you

Questions?
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