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Abstract— We evaluate the radio signal strength indicator
(RSSI) of an nRF5188 based robot swarm for relative localiza-
tion. We discuss an efficient way of high-speed data collection
with up to 40,000 RSSI samples per second. Semi-automatic ra-
dio parameter selection as well as robot-assisted data collection
methods are presented. Furthermore, we show our collected
data including the variance for selected outdoor experiments.
The resulting data is used to fit a novel sigmoid based power
vs. log-distance model, which in turn is the foundation of a
centralized anchor-free localization algorithm. We present a
simple gradient descent based localization approach which is
computationally simple, easily extensible to distributed swarms,
and scales efficiently to large number of robots in a swarm.

I. INTRODUCTION
Localization remains a hard problem in robotics. Using

multiple robots which are able to localize each other can help
for formation control and improve the global localization
of the group (for example, if one of the robots has access
to GPS-based localization). The signal strength of radio
communication correlates with the distance between the
sender and receiver. Assuming a 2D plane, the formation can
be reconstructed up to orientation and mirror uncertainties if
all robot-to-robot distances are known.

The scope of the project is to evaluate whether the RF-
chip of the Crazyflie 2.0 quadrotor can be used as foundation
for the relative localization for a small swarm of robots in
a simplified 2D-plane setting. We consider the case of static
nodes (Crazyflies) on the ground and attempt to do a relative
localization for each Crazyflie using only RSSI data from its
neighbors.

II. RELATED WORK
Localization for swarms has mainly been discussed in

the Wireless Sensor Networks (WSNs) literature. Recent
surveys [1], [2] classify the research in this field either by
measurement techniques (such as Time of Flight or signal
strength), or localization approach (self-localization or target
localization).

For our work, we will focus on related work which either
uses the radio signal strength indicator (RSSI) or discusses
self-localization algorithms. In general, the problem of lo-
calization with RSSI data can be divided into two phases:

1) Retrieve distance information from RSSI data.
2) Estimate positions from pairwise distance information

using some optimization algorithm.
Retrieving distance information from RSSI readings has

been attempted in literature using both deterministic func-
tions and stochastic methods. The most common approach
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to model the RSSI vs. distance function is by using a Log-
distance path loss model [3]. It assumes that measured RSSI
decreases linearly with log10 d and models uncertainty in this
process by imposing a zero-mean gaussian noise on top of
the straight line. Furthermore the model has been extended
with a dynamic variance (LNSM-DV) [4].

After retrieving the function (or probability distribution)
relating RSSI and distance, the next step involves solving
for exact 2-D or 3-D coordinates using pairwise distance
data which can be done by formulating the problem as
an optimization problem. A large portion of the wireless
localization literature revolves around ways to solve the
resulting optimization problem.

Moore et al. use fairly accurate (5 cm) sonar-based dis-
tance sensors to achieve relative localization between moving
robots using a distributed algorithm [5]. They employ a
simple computational approach to find quadrilaterals in a
local neighborhood which are robust to noise and then
compute relative transformations between local clusters, all
of which can be done in O(n3) time using efficient data
structures. While the algorithm shows good theoretical and
practical results, it is questionable if it will work for the kind
of data we obtain using RSSI, which suffers from fading and
interference effects and as such has a lot of noise.

RSSI-based approaches often use so-called beacons or
anchor nodes, which are nodes deployed at a fixed and known
position. Zanca et al. compare different RSSI-based methods
with varying number of anchor nodes in an indoor setting [6].
The results suggest an expected accuracy of about 2m with 5
anchor nodes using a Maximum Likelihood approximation.
On the contrary, we want to analyze the possibility of
using RSSI measurements without anchor nodes for relative
localization.

Another set of approaches to localization derive their in-
spiration from biological swarms. Kulkarni et al. [7] present
a comparison of the two most popular bio-inspired opti-
mization algorithms: Particle Swarm Optimization (PSO) and
Bacterial Foraging Algorithm (BFA) in terms of the number
of nodes localized, localization accuracy and computation
time.

In this work we propose a smooth sigmoid function to
model the variation of RSSI vs. distance and then present a
simple gradient descent based optimization approach which
is computationally simple, easily extensible to distributed
swarms and scales efficiently to large number of robots in a
swarm.



III. TARGET PLATFORM

The Bitcraze Crazyflie 2.0 Nano Quadcopter [8] is a flying
development kit that targets researchers and hobbyists. It
weighs about 27 g, is about 92mm motor to motor, and fits
in the palm of a human hand. The software and hardware
specifications are freely available online, which makes the
platform great for research.

The Crazyflie has a dual-MCU architecture using an
nRF5188 (Cortex-M0, 32MHz, 16 kB SRAM, 128 kB
flash) for power management and communication and an
STM32F405 (Cortex-M4, 168MHz, 192 kB SRAM, 1MB
flash) for the control algorithm. Both MCUs are connected
using UART. Sensors include the MPU9250 (gyroscope,
accelerometer, magnetometer) and a LPS25H (pressure). The
setpoint (yaw, pitch, roll, thrust) can be sent from a PC using
a special USB dongle, or using BlueTooth LE.

The radio chip nRF51822 is a SoC which is able to
use BlueTooth Smart and custom 2.4GHz wireless radio
communication. It is possible to communicate over 127
different channels in the 2.4GHz band and it supports
RSSI (Received Signal Strength Indicator) with an accuracy
of ±6 dB (resolution of 1 dB [9, Table 42]). Additionally,
the power amplifier for the RF communication is software
controlled.

IV. APPROACH TO DATA COLLECTION

In the following we will describe the various steps which
were taken in order to collect RSSI data between different
Crazyflies.

A. Implementing PTX mode and RSSI measurements

With the default firmware every Crazyflie acts as primary
receiver (PRX), while the PC-side (using the USB-Dongle
Crazyradio) operates as primary transmitter (PTX). The
primary transmitter can send a data packet, which will be
received by the receiver and acknowledged using up to
32Bytes in the acknowledgment packet. For communicating
within the swarm, it is required that each Crazyflie can
operate in PTX mode as well. This mode is not implemented
in the default firmware. Therefore, we used a library by the
chip vendor [10] initially, however it turned out to be not a
good fit for two reasons:

1) The queues for sending and receiving are completely
independent, i.e. it is impossible to send the correct
acknowledgment packet immediately as a response.
This asynchronous protocol behavior made higher-
level communication primitives much more compli-
cated and error-prone.

2) While low-frequency RSSI sampling was supported,
adding a special high-frequency sample mode was too
complicated due to the complexity of the library code.

Nevertheless, working code based on this library can be
found in one of our branches1.

1https://github.com/whoenig/Crazyflie2-nrf-firmware/
tree/cs599_ptx

To overcome the above discussed limitations, we imple-
mented our own radio driver2. A callback mechanism allows
to acknowledge packets immediately, as long as the required
computation is very small (the callback has to be called
during an interrupt handler). Furthermore, we implemented
high frequency RSSI sampling with up to 60,000 samples per
second. This data is filtered to only take those data points
into account where the radio is in receive mode, the Crazyflie
device address matches the packet header, and a correct
CRC was sent. In practice, this reduces the sampling to
about 40,000 samples per second if the transmitting Crazyflie
transmits as fast as possible.

We use a hybrid approach to stream the data out. First, the
data is averaged on chip, by computing the count and sum
during every RSSI interrupt. Both count and sum are sent
via SEGGERs Real Time Terminal [11] using a SEGGER
J-Link EDU every 10ms. This requires the Crazyflie Debug
Adapter Kit which contains a small PCB to be soldered on
the Crazyflie to obtain an SWD debug adapter port. On the
PC side small python scripts are used to receive, plot, and
store the data.

B. Parameter selection: Power, Datarate, Channel

The radio allows to select eight different trans-
mit power levels (4 dBm, 0 dBm, −4 dBm, −8 dBm,
−12 dBm, −16 dBm, −20 dBm, −30 dBm), three datarates
(250Kbit/s, 1Mbit/s, 2Mbit/s), and 127 channels which
correspond to a carrier frequency. It is expected that all
those parameters do not alter the obtained RSSI significantly,
and hence it should be possible to select a fixed set of
parameters. We did three different experiments to validate
this assumption.

First, we implemented a special powerscan mode in the
firmware, which automatically switches between all available
transmit power levels and collects the RSSI values. These
values were recorded at different distances indoors. The
Crazyflies were placed manually in a room equipped with
a motion capture system at different distances and values
were recorded once the data stabilized. The results are
visible in Fig. 1(a) and show that there is just a fixed offset
between the power levels as expected. However, there is also
a saturation visible for very short distances. Therefore, we
selected −8 dBm as power level for future experiments.

Second, we implemented a similar mode for the different
data rates. There was no visible change in the RSSI values
and we choose the slowest possible mode. This maximizes
the number of RSSI samples we get during communication,
because the samples are taken at a fixed frequency indepen-
dent of the data rate.

Third, we implemented a special channelscan mode which
collects the RSSI values for all available channels while
keeping the distance constant. Due to multi-path interference
and other signals on the 2.4GHz band (such as WiFi), a high
value does not necessary mean a strong signal. Therefore we

2https://github.com/whoenig/Crazyflie2-nrf-firmware/
tree/cs599_datacollection
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(a) Powerscan: RSSI at different power levels vs. distance. (b) Channelscan: RSSI vs. Frequency. Different lines represent different
distances.

Fig. 1. Data collection results for parameter selection.

used an approximate method to find a good channel: The
data is collected at different, discrete distances (Fig. 1(b)).
For each distance sample, the mean across all frequencies
is computed. Finally, the frequency which was most often
for all different distances close to the mean is selected as a
good channel. Using this method, we found that channel 66
(2466MHz) is a good choice for the indoor experiments.

We found a more accurate method for the channelscan
later by using a receiver only which samples RSSI values
constantly. For channels which are not occupied, the mea-
sured RSSI value is simply fully saturated (−100 dBm),
however channels which are used by other signals pick up
a slightly higher power level. This method was used for the
outdoor experiments and suggested channel 90.

C. Indoor collection (small distance ranges)

In order to obtain a larger amount of data, we put the
transmitting Crazyflie on top of a Clearpath Turtlebot, which
was remotely controlled with a joystick. The joystick was
directly attached to the netbook so that no WiFi was required.
As before, the ground truth (distance and orientation) of both
Crazyflies were collected using the Vicon motion capture.
The data was streamed in real-time to a PC and oscillations
were clearly visible while moving or during other external
events such a person walking by. Hence, an operator could
use another joystick to store data after it stabilized.

While there was a clear trend of RSSI values visible in
case of a fixed orientation (Fig. 2(a)), no relationship was
visible when rotating at least one of the Crazyflies (Fig. 2(b)).
In a swarm, the relative angle between the antennas can not
be fixed and thus the RSSI/distance model needs to hold for
arbitrary rotations or the angle needs to be taken into account
in the mode explicitly. In order to minimize interference
effects, we decided to collect the data outdoors instead.

D. Outdoor collection with magnetometer

To obtain enough datasets to estimate the function
RSSI = f(θ, d) we need a reliable way of measuring
the angles of the two Crazyflies. The on-board IMU has a
magnetometer, which is not used in the default firmware.
Magnetometers need to be calibrated for hard-iron and soft-
iron errors to achieve reasonable results. We followed a

method briefly described in [12] which in turn is based on
several scientific papers [13]–[15]. We collect n readings of
the raw magnetometer data (3-dimensional vector mi) along
with relative rotations to earth (Ri), based on accelerometer
and gyroscope sensor fusion [16]. Ideally, the following
equations should hold, where b is the earth magnetic field at
the fixed calibration location in the earth coordinate frame,
M corrects for rotation and stretch, and B is a fixed offset:

mi =M(Rib+B) ∀i ∈ {1 . . . n} (1)

We have 6n values given and 15 unknown and can pose
the problem as optimization problem to minimize the least
mean square error for a large enough n. We collected the data
using the logging capabilities of the default firmware and
implemented an iterative optimization method using Matlab.

We calibrated the magnetometer for both Crazyflies and
used a state-of-the-art algorithm to fuse it with the ac-
celerometer and gyroscope [16]. The data was collected
outdoors with varying distances between 0m and 1.5m at
different rotations. As in the other experiments, an operator
collected the data only after it stabilized using a real-time
plotting tool and a joystick.

The data showed non-consistent results, i.e. the random
noise was larger than the effect of the different orientations.
This led us to the conclusion to try to find a solution which
works on a larger scale (up to 15m).

E. Outdoor collection with iRobot Create2

To minimize human intervention and maximize the amount
of data we collect, we put the transmitting Crazyflie on an
iRobot Create2. The robot was connected to a laptop using
a long USB cable for remote control. Unfortunately, the
existing programming packages are either for the Create1,
or do not have proper odometry support. Therefore, we
implemented our own python driver which allows us to
stream the optical encoder data every 15ms for odometry
estimates and controlling the Create2 using a Joystick.

The experiment was repeated five times with a constant
slow forward motion of the Create2, while the data was
collected continuously. The raw data is shown in Fig. 3(a).
Please note that we increased the power level to −4 dBm.



(a) RSSI vs. distance using fixed orientations of the Crazyflies. (b) RSSI vs. distance using varying orientations of the Crazyflies.

Fig. 2. Indoor data collection within small distances, using channel 66, −8dBm, and 250Kbit/s.

V. MODEL FITTING

The most common model used to fit RSSI data is the
Log-distance path loss model [3]. It models the received
RSSI reading (P ) as a straight line function of log10(d) with
superimposed gaussian noise. The gaussian noise parameters
can be assumed constants or varying with distance. The
model is given by:

P = P0 − γ log10 d+Xg (2)

In general, this model works well within a range of
distance d1 ≤ d ≤ d2, but the RSSI readings get saturated
outside this distance range. So we use a piecewise linear
(PWL) model which follows the Log-distance path loss
model between the cutoffs d1 and d2, but imposes a saturated
reading outside the range i.e.

P =


P0 − γ log10 d1 +Xg, d ≤ d1
P0 − γ log10 d+Xg, d1 ≥ d ≥ d2
P0 − γ log10 d2 +Xg, d2 ≤ d

(3)

For parameter estimation, we choose the values d1, d2, P0

and γ which maximize the log-likelihood of occurrence of
our data set. We iteratively search for the cutoffs d1 and d2,
while computing P0 and γ every time using gradient descent
for each pair (d1, d2) and finally retain the best choices.
Figure 3(a) shows our dataset and the fitted piecewise linear
model.

Though the piecewise linear model is a good fit for
making predictions, it is not a good model to use in any
optimization since it is not smooth. We aim to develop a
decentralized localization algorithm later on, and most robots
are not sophisticated enough to run complicated non-linear
optimization techniques. Hence it is important to have a
smooth, continuous and differentiable model for RSSI vs.
log10 d fit, so that even robots with low computation power

can use the localization algorithm while employing a simple
gradient descent for optimization.

For this reason, we came up with another model to
describe the RSSI vs. log10 d data. We model our data with
a sigmoid curve which takes the following form:

P = PL +
PH − PL

1 + e−s(log10 d−µ)
+Xg (4)

The sigmoid function is a continuous and differentiable
function and hence has nice properties with respect to differ-
entiation. To the authors’ knowledge, this model has not been
used in the localization literature up till now. The sigmoid
fit to our dataset has been shown in Fig. 3(b). It is clear that
not only does the model fit better to the data now, but also
permits the use of local gradient-based optimization methods
for localization later on. Since Xg is distributed normally, we
need its mean and standard deviation as functions of distance,
but for most practical purposes the mean can be set to 0, and
the standard deviation can be assumed constant. It can be
observed from Fig. 3(c) that the best-fit straight line has an
average standard deviation of about 4 dBm, which we will
use as a measure of standard deviation for our model.

VI. CENTRALIZED LOCALIZATION

We used our model to conduct experiments for relative
localization with a swarm of six Crazyflies. Though we later
intend to have a full decentralized localization algorithm,
we currently solved the localization problem in a centralized
way.

The swarm of Crazyflies was kept in a static configuration
indoors and we allotted each of them a unique ID. The idea
was to let them exchange RSSI data amongst themselves,
which would then be streamed out to a PC and a localization
algorithm run on it.
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(a) Fitting a piecewise linear model to RSSI dataset.
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(b) Fitting a sigmoid model to RSSI dataset.
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(c) Std. deviation as a function of distance about the fitted sigmoid.

Fig. 3. Model fitting to RSSI dataset.

A. Approach
Each Crazyflie was pre-programmed to transmit at

−4 dBm, 250KBit/s and 2490MHz, and ran a state ma-
chine which initialized all of them in a wait to synchronize
mode. On receiving the synchronize signal from a PC, all
of them would start their clocks together and go into a
signaling mode. In this mode, the Crazyflies took turns
transmitting messages (containing their ID) one-by-one in
the order of their unique IDs while all other Crazyflies would
listen and measure RSSI signal strength. This way each
Crazyflie would end up having signal strength data from
each of their neighbors. This stage was followed by a data
sharing stage, where each Crazyflie would transmit all its
signal strength data to a PC, where it would be fed to a
localization algorithm.

B. Problem Formulation
Using our sigmoid model for RSSI data, we now formu-

late the problem of localization as a maximum likelihood
problem. Table I shows the notation used in this paper.

Given a set of readings for n Crazyflies in the format:
[TxID,RxID,Pij], the problem of relative localization is

n Number of Crazyflies
TxID Transmitter Crazyflie ID
RxID Receiver Crazyflie ID
Pij RV representing RSSI value with TxID = i and RxID = j
pij RSSI value with TxID = i and RxID = j
Xi RV representing x-coordinate of ith Crazyflie
xi x-coordinate of ith Crazyflie
Yi RV representing y-coordinate of ith Crazyflie
yi y-coordinate of ith Crazyflie
Dij RV representing distance between ith and jth Crazyflies
dij Distance between ith and jth Crazyflies
Aij 1 if pij value is available, 0 otherwise
N (i) Set of neighbors of Crazyflie with ID = i

TABLE I. Notation used in this paper (RV = Random Variable).

of determining the euclidean coordinates (xi, yi) of each
Crazyflie from the above data. We formulate this problem
as a maximum likelihood problem as follows:

max
x,y
P(P = p|X = x and Y = y) (5)

Since all readings are independent, the above can be written
as a product of probabilities of occurring of individual



readings.

max
x,y

∏
i,j

j∈N (i)

P(Pij = pij |Xi = xi, Yi = yi, Xj = xj , Yj = yj)

(6)
Using our sigmoid model with gaussian noise, this can be
written as:

max
x,y

∏
i,j

j∈N (i)

1√
2πσ

e
− 1

2σ2

(
pij−PL−

PH−PL
1+e

−s(log10 dij−µ)

)2

(7)

where

dij =
√
(xi − xj)2 + (yi − yj)2 (8)

Since σ has been assumed independent of distance (and
hence of x and y), we can ignore it and further transform the
problem to a minimization problem by taking negative-log
of the objective function.

min
x,y

1

2

∑
i

∑
j∈N (i)

(
pij − PL −

PH − PL
1 + e−s(log10 dij−µ)

)2

(9)

Now considering the sigmoid function as:

g(z) = PL +
PH − PL

1 + e−s(z−µ)
(10)

and letting Aij denote the availability of the value pij , we
can write the above minimization problem as follows:

min
x,y

F (x, y)

where

F (x, y) =
1

2

∑
i

∑
j

Aij (pij − g(log10 dij))
2

(11)

C. Optimizing with Gradient Descent

To optimize our objective function (11), we use a simple
gradient descent algorithm. But to compute the gradient of
F (x, y), we first need the following derivatives:

∂dij
∂xi

= −∂dij
∂xj

=
xi − xj
dij

(12)

∂dij
∂yi

= −∂dij
∂yj

=
yi − yj
dij

(13)

We have the derivative of sigmoid function as:

d(g(z))

dz
=
s(PH − PL)e−s(z−µ)

(1 + e−s(z−µ))2
(14)

which can be re-written as follows:

d(g(z))

dz
=
s(g(z)− PL)(PH − g(z))

PH − PL
(15)

With the above derivatives in place, we can now calculate
the gradient of F (x, y) as follows:

∂F (x, y)

∂xk
= −
∑
j

{
Akj (pkj − g(log10 dkj))

s(g(log10 dkj)− PL)(PH − g(log10 dkj))
PH − PL

(xk − xj)
d2kj log 10

}
−
∑
i

{
Aik (pik − g(log10 dik))

s(g(log10 dik)− PL)(PH − g(log10 dik))
PH − PL

(xk − xi)
d2ik log 10

}
(16)

∂F (x, y)

∂yk
= −
∑
j

{
Akj (pkj − g(log10 dkj))

s(g(log10 dkj)− PL)(PH − g(log10 dkj))
PH − PL

(yk − yj)
d2kj log 10

}
−
∑
i

{
Aik (pik − g(log10 dik))

s(g(log10 dik)− PL)(PH − g(log10 dik))
PH − PL

(yk − yi)
d2ik log 10

}
(17)

The above gradient equations are correct assuming that
Akk = 0 ∀k.

Finally we can implement the gradient descent in an
iterative loop as shown in algorithm 1. α is the step-size
factor and can be fine-tuned to speed up or slow down the
convergence of the algorithm.

1: Initialize x, y randomly
2: repeat
3: xk := xk − α∂F (x,y)

∂xk
∀k

4: yk := yk − α∂F (x,y)
∂yk

∀k
5: until convergence

Algorithm 1. Gradient Descent Algorithm

VII. RESULTS AND DISCUSSION

Preliminary tests with randomly generated RSSI values
(including noise) showed that our centralized localization
algorithm can find the correct solution. One of the nodes was
always held fixed at the origin to avoid convergence issues
due to absence of a global reference frame. This avoided
a global translation ambiguity in the solution, however the
solution does suffer from global reflection and rotation
ambiguities. Seeding the initial values with a noisy guess
of the actual solution often derived a very close match if the
standard deviation of the super-imposed noise was not very
large.

Results for a run of the centralized localization algorithm
can be seen in Fig. 4. The data for this experiment was
created by placing six nodes randomly and generating their
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Fig. 4. Results of Centralized localization with 6 nodes and randomly
allotted locations. The data was created by adding zero-mean gaussian noise
with 4dBm std. deviation to the RSSI readings generated by the sigmoid
model. A noisy estimate of the actual locations was provided to seed the
optimization algorithm. The algorithm does not give a very accurate estimate
finally because of the added noise in the RSSI readings.

pairwise RSSI readings according to our sigmoid model. A
zero-mean gaussian noise of std. deviation 4 dBm was added
to the RSSI readings before giving them to the optimization
algorithm. The algorithm was seeded with a close (but
random) initial estimate of the nodes’ locations. As can
be observed from the figure, the algorithm does produce
estimates close to the actual positions. It could not converge
to the actual positions because of the noise in RSSI readings.

Further tests with actual data did not work out that well
and the algorithm did not find a close match. There are many
possible causes for this behavior:
• The algorithm should behave better with a large number

of nodes but we were limited by the number of available
robots to six nodes.

• The Crazyflies have slightly different RSSI vs. distance
curves based on their actual antenna placement, chip
variations etc. Nevertheless, the model had been created
using a specific single pair of Crazyflies and not for all
of them. So it would be useful to create a model which
takes the individual transmission and reception power
offsets of each Crazyflie into account, by accepting them
as input parameters.

• Finally, our approach assumes a constant variance,
while Fig. 3(c) suggests that the variance is actually
increasing with distance and the variation of RSSI with
distance should be included in the model as well.

VIII. FUTURE WORK
Future work on this project would proceed along the lines

of obtaining better models and filtering the acquired data.
More specifically we wish to do a histogram-based data

collection [17] which rejects the lower and upper 25% RSSI
samples at each distance before computing an average. This
leads to better noise rejection for the collected samples.

Another way to improve the model-fitting could be to do
outlier rejection on the dataset first. It is clear from figures
3(a) and 3(b) that there are many outliers at every distance
and rejecting them would give us a better model representing
the data.

Moreover we currently include only those readings in our
optimization objective where pij is available. But if pij is
not available, it signifies that Crazyflies i and j are probably
far apart and this information can also be considered in
the optimization objective to make the localization more
accurate.

Lastly, since each Crazyflie is slightly different, we would
like to model the individual transmission and reception
offsets of the wireless nodes (Crazyflies) as pointed out in
section VII.
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APPENDIX A: SOURCE CODE

Crazyflie firmware changes

The code can be found online (including compilation and
usage instructions):

NRF51 Firmware: PTX Mode based on Micro-ESB: This
firmware uses [10] to implement both PTX and PRX mode.
https://github.com/whoenig/

Crazyflie2-nrf-firmware/tree/cs599_ptx

NRF51 Firmware: Datacollection: This firmware uses
a custom driver for the radio. It supports power, datarate,
and channel scanning as well as a streaming mode for
continuous data collection for fixed power level, datarate,
and channel. In combination with the STM32 compass
firmware, it is possible to collect the orientation based on
the magnetometer as well.
https://github.com/whoenig/

Crazyflie2-nrf-firmware/tree/cs599_datacollection

NRF51 Firmware: Centralized Localization: This
firmware listens to a signal from the PC in order to
synchronize clocks, collect pairwise RSSI signal strength
in the whole swarm, and sends the results back to the PC
for centralized localization. Hence, it can be used for pure
data collection as well without the need of a special debug
adapter.
https://github.com/whoenig/

Crazyflie2-nrf-firmware/tree/cs599_master

NRF51 Firmware: (Improved) Channelscan: This
firmware contains an improved channelscan which does
not require a special transmitter. Instead, it continuously
measures signal strength (without filtering) for different
channels and sends the data to the PC using SEGGERs Real
Time Terminal.
https://github.com/whoenig/

Crazyflie2-nrf-firmware/tree/channelscan

STM32 Firmware: Compass Support: This firmware (for
the STM32) allows to read the raw magnetometer data,
uses a given calibration model to correct the values, and
sends them to the NRF51 using UART for data collection
purposes.
https://github.com/whoenig/Crazyflie-firmware/tree/

cs599_master

Scripts

The following scripts are part of a private github reposi-
tory.
• iRobot Create2:

https://github.com/whoenig/cs599project/blob/

master/scripts/Create2.py

• Model Fitting:
https://github.com/whoenig/cs599project/tree/

master/scripts/Model%20learning

• Centralized Localization:
https://github.com/whoenig/cs599project/tree/

master/scripts/Centralized%20Optimization

• Magnetometer Calibration:
https://github.com/whoenig/cs599project/tree/

master/scripts/magnetometer
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