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Introduction to Linear Systems 
• Aim:- To solve for x in the linear system which is of the form: 

 
Ax = b 

 
 
 

 
 

• Order of the system = n 
 

• Matrix A should be non-singular for unique solution to exist. 
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Cramer’s Rule 
• Solution provided by Cramer’s Rule: 

xi = Δi  / det(A) 
 Δi = Determinant of the matrix obtained by substituting the i-th 

column of A by the vector b. 
• Essentially equivalent to inverting the matrix A and getting x = A-1b. 

 
• Computational effort: O((n+1)!) flops as determinants are evaluated 

recursively. 
• A computer able to perform 109 flops per second would need 

9.6×1047 years to solve a linear system of order 50. 
 

• Need alternate methods for solving linear systems. 
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Direct Methods to solve Linear Equations 

• Solve a set of linear equations in a finite number of steps. 
• Based around triangular matrices and the fact that any system of the form: 

 
 
 
 

 
 can be solved using Forward Substitution as follows: 
 
 
• The argument can be extended for upper triangular matrices with Backward 

Substitution. 
• Takes n2 flops of computation. 
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Gaussian Elimination Method (GEM) 

• Aims at reducing the original system Ax = b to an equivalent system (having 
the same solution x) of the form Ux = β, where U is an upper-triangular 
matrix and β is the updated right hand side matrix. 

• New system can be solved with Backward Substitution. 
• Let the original system be A(1)x = b(1),  

 
 
 
 
 

• Introduce the multipliers mi1, 
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Gaussian Elimination Method (GEM) 

• Now define, 
 
 
 

• We get the new system, A(2)x = b(2) as shown: 
 
 
 
 
 

• Now x1 has been removed from all the equations except the first one. 
• Similar procedure can be repeated for x2, …, xn and the left hand matrix can 

be reduced to an equivalent upper-triangular matrix. 
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Gaussian Elimination Method (GEM) 

• The final upper-triangular system A(n)x = b(n) OR Ux = β looks like: 
 
 
 
 
 
 
 
 
 

• Now we can solve the above system with Back Substitution Technique. 
 

• Cost of computation: (2n3/3 + n2) + n2 flops = O(n3) 
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Gaussian Elimination Method (GEM):  
Applicability 

• Applicable only if all the coefficients mik are defined i.e. aii
(k) should be non-

zero. This can be guaranteed for: 
1) Matrices diagonally dominant by rows. 
2) Matrices diagonally dominant by columns. 
3) Symmetric and Positive Definite Matrices. 
 

• Positive Definiteness: Matrix A ϵ Cn×n is said to be positive definite in Cn iff 
for any non-zero vector x, (Ax, x) is real and positive. 

• Diagonally Symmetric by rows: 
 
 

• Diagonally Symmetric by columns:  
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LU Factorization 
• Write A = LU, where L = Lower triangular matrix with diagonal entries all 

equal to 1, and U = Upper triangular matrix.  
Ax = b        LUx = b 

 
 
 
 
• Similar to GEM and the entries of L and U can be obtained while carrying 

out GEM. 
 

• Now assume Ux = w  Lw = b and solve for w using Forward Substitution. 
Next solve for x from Ux = w using Backward Substitution. 

• Computational complexity same as of GEM.  
• Useful for system of equations where matrix A remains same and solution is 

needed for different vectors b. 
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Linear Iterative Methods 
• Basic idea: To form a sequence of vectors x(k) that enjoys the convergence:  

 
 

• Aim: To employ vectors x(k), which should be cheaply generated per 
iteration and should quickly converge to x in a small number of iterations. 
 

• Formally, iterative methods give the solution of the equation Ax = b after 
infinite iterations, but in practice they are stopped for minimum value of n 
such that || x(n) – x || < ϵ, where ϵ is a fixed tolerance. 
 

• If we denote e(k) = x(k) – x, the error at the kth step of iteration, then the 
condition for convergence amounts to the requirement:  

 for any choice of the initial guess x(0). 
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Linear Stationary Iterative Methods 

• Linear iterative methods: x(k+1) = Bx(k) + f,  k ≥ 0  
• B (n×n matrix): called the ‘iteration matrix’ and f: vector obtained from b. 

 
• In order to obtain B and f, we generally split A into two parts: 
 A = P – N, where P is called the Pre-conditioning matrix. 

 
 Ax = b 
 Px(k+1) = Nx(k) +b 
 x(k+1) = P-1Nx(k) + P-1b  
 B = P-1N and f = P-1b. 
  
• P should be non-singular and easy to invert. 
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Jacobi Method 

• Write A as the sum of D(diagonal elements) and R(remainder) 
 
 
 
 

• Then  
 

• The algorithm can be stated as: 
1. Choose x(0). 
2. Repeat till convergence { 

 
 

 } 
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Gauss – Siedel Method 

• Write A as the sum of D(Diagonal matrix), L*(Lower-triangular matrix) and 
U*(strictly Upper-triangular matrix) 
 
 
 
 
 
 

• Then 
 

• Differs from Jacobi method only in the fact that it uses the already 
calculated elements of x(k+1) to update the remaining elements per iteration.  
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Gauss – Siedel Method 

• The algorithm can be stated as: 
1. Choose x(0). 
2. Repeat till convergence { 

 
 

 } 
 

• Pros: 
– In general, results in faster convergence compared to Jacobi Method. 
– No need to store previous values of xi

(k) after calculating xi
(k+1), so saves 

memory. 
• Cons: 

– Components of x(k) can’t be updated in parallel as in Jacobi Method. 
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Over-Relaxation Methods (JOR) & (SOR) 
• JOR = Jacobi Over-Relaxation and SOR = Successive Over-Relaxation 
• Generalizations of Jacobi and Gauss-Siedel Methods respectively. 

 
• Define a relaxation parameter = ω (>0) 
• We have ωAx = ωb 

 
• For JOR, put A = D + R, 
• The update relation gets modified as: 

 
• Element – wise: 
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Over-Relaxation Methods (JOR) & (SOR) 
• This can be expressed as: 

 
• Similarly for SOR, put A = D +L*+ U*, 
• The update relation gets modified as: 

 
• Element – wise: 

 
 
 

• This can be expressed as: 
 

• So, in both JOR and SOR, ω scales the correction term to be added in each 
update and thereby controls the rate of convergence. 

• ω>1 means over-relaxation and ω<1 means under-relaxation. 
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Convergence Results for Jacobi, Gauss-
Siedel and Over-Relaxation Methods 

• If A is a strictly Diagonally Dominant Matrix by rows, the Jacobi and Gauss-
Siedel methods are convergent. 
 

• If A and 2D – A are symmetric and positive definite matrices then Jacobi 
Method is convergent. 
 

• If A is symmetric and positive definite, Gauss-Siedel method is 
monotonically convergent w.r.t. the norm ||∙||A. 
 

• If the Jacobi method is convergent then the JOR method converges if 
0<ω≤1. 
 

• For SOR method to converge, 0<ω<2. 
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Non-Stationary Iterative Methods 
• Stationary Iterative Methods: Jacobi, Gauss – Siedel, GOR, SOR. These 

had a relaxation (acceleration) parameter ω, independent of the current 
iteration. 
 

• Non-stationary Iterative Methods involve acceleration parameters which 
change every iteration. 
 

• Examples:-  
– Method of Steepest Descent (Gradient Method),  
– Conjugate Gradient Algorithm 

 
• These are best suited for large matrices with many null entries per row 

(Sparse Matrices). 
• They might be the only methods available for Non-Linear systems. 
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Method of Steepest Descent 
• We’ll study the methods for a symmetric, positive definite matrix A i.e. 
 A = AT and xTAx>0 for all non-zero vectors x.  
• Consider the quadratic form energy function: 

 
• The gradient of the function is given by: 
• The extremum of this function occurs when:  

 
• We’ll use this example:               which has solution 

 
• Consider any arbitrary point p and x = A-1b. Then for symmetric matrix A, 

 
• Further, for positive definite matrix A, this says that f(p)≥f(x), hence x is the 

minima. 
• So, to solve Ax = b, we have to minimize the energy function f(x). 

Nitin Kamra (IIT Delhi) Iterative Algorithms I 20 



Method of Steepest Descent 
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Method of Steepest Descent 
• We start at an arbitrary point x(0) and move towards the direction of steepest 

descent. 
• At any point, error e(i) = x(i) – x. 
• Direction of steepest descent at any point x(i) is given by:  
 residual r(i) = - f’(x(i)) = b – Ax(i) = -Ae(i).   
• Step size = α(i). It is variable and decided every iteration to minimize error by 

moving in the direction of steepest descent. For minimizing error, we have  
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Method of Steepest Descent 
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Motivation for Conjugate Gradient 
• Method of Steepest Descent can take too 

many iterations to converge.  
• As the sequence x(k) approaches x, the 

step-size α(k) decreases and the 
convergence slows down. 
 

• Motivation for conjugate Gradient: 
Instead of probing repeatedly in the same 
direction, if we could identify ‘n’ orthogonal 
directions in which we could move only 
once each the correct amount and end up 
at the right position, convergence would be 
very quick. 
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Motivation for Conjugate Gradient 
• Let the orthogonal search directions be d(0), d(1), …, d(n-1). 
• Then x(i+1) = x(i) + α(i)d(i). For each step e(i+1) is perpendicular to d(i).   
• Using this condition  

 
 
 
 

• But this implies that to know α(i), we have to know e(i), which is like already 
knowing the solution x. 
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Conjugate Gradient Algorithm:  
Method of Conjugate Directions 

• Solution is to make the search directions A-orthogonal or conjugate i.e. for 
any two directions d(i) and d(j), d(i)TAd(j) = 0. 
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Conjugate Gradient Algorithm:  
Method of Conjugate Directions 

 
• Our new requirement is e(i+1) be A-orthogonal to d(i), which is equivalent to 

finding the minimum point along the search direction d(i).  

 
• Using the above condition, we solve for α(i),  

 
 

• With the above value of α(i), it can be proved that if initial error e(0):  
 
 

 then α(i) = -δ(i) which means that each step cancels a component of error in 
one of the search directions d(i). Hence after n-steps all the components of 
error have been nulled down and so we achieve exact convergence to x. 
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Conjugate Gradient Algorithm:  
Gram Schmidt Conjugation 

• How to generate the A-orthogonal directions {d(i)}? 
 

• Gram Schmidt Process generates {d(i)} from a set of ‘n’ linearly independent 
vectors: {u(0), u(1), … , u(n-1)}. (For now the co-ordinate axes will do.) 
 
 

• To construct d(i), take u(i) and subtract out any components that are not A-
orthogonal to the previous (i-1) d-vectors. 
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Conjugate Gradient Algorithm:  
Gram Schmidt Conjugation 

• Βik can be found by ensuring A-orthogonality of each d(i) with each d(j) as:  
 
 
 

• Problem: Takes O(n3) computation. Can turn into gaussian elimination. 
Hence the method’s true power remained dormant till the CG algorithm was 
discovered. 
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Method of Conjugate Directions: Example 

Nitin Kamra (IIT Delhi) Iterative Algorithms I 30 



Method of Conjugate Directions: 
Observations 

1. Residual at the j-th iteration is orthogonal to all the previous directions. 
 

 As r(j) = -Ae(j), and e(j) is A-orthogonal to d(i) for all i<j. 
2. As span {d(0), d(1), … d(j-1)} = span {u(0), u(1), … , u(j-1)}, Residual at 

the j-th iteration is orthogonal to all previous u(i)’s as well. 
 

3.                 due to the way Gram-Schmidt process works. 
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Conjugate Gradient Algorithm 

• It is simply the method of Conjugate Directions with the directions 
constructed from the conjugation of the residuals i.e. u(i) = r(i). 

• Advantages:- 
 As r(i) is orthogonal to all previous search directions, its guaranteed to 

always produce a new linearly independent search direction, unless r(i) 
= 0 in which case the problem has already been solved. 

 As r(i) is orthogonal to all previous u(j)’s, its orthogonal to all previous 
residuals now. 

• Now observe that: 
• So, r(i+1) is a linear combination of r(i) and Ad(i). 
 r(i) is a linear combination of r(i-1) and Ad(i-1)  

 r(i-1) ….. 
• As r(i+1) is orthogonal to all previous residues, this means that it is A-

orthogonal to all previous search directions except d(i). 
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Conjugate Gradient Algorithm 

• This simplifies the βij coefficients 
tremendously as now, there exists 
only 1 such non-zero coefficient for 
every iteration. So, βij is non-zero 
only for j=i-1. 
 

• Hence we call it β(i) = βi,i-1 which is 
now given by: 
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Summary 
1. Understood what a linear system is, and Cramer’s rule to solve it. 

 
2. Cramer’s rule computationally very expensive - O((n+1)!), so we 

studied Direct Solvers like Gaussian Elimination or LU factorization 
– O(n3). 
 

3. Next we explored stationary iterative techniques like the Jacobi 
method and Gauss-Siedel methods, also their generalized 
versions JOR and SOR. 
 

4. Further, learnt about non-stationary iterative techniques like 
Method of Steepest Descent and the most popular Conjugate 
gradient algorithm, which gives exact solution within ‘n’ iterations. 
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Figures:- 
All the figures have been taken from: 
1. An Introduction to the Conjugate Gradient Method without the 
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