
Iterative Algorithms I:
Elementary Iterative Methods and the Conjugate
Gradient Algorithms

By:- Nitin Kamra
Indian Institute of Technology, Delhi

Advisor:- Prof. Ulrich Reude

Outline
1. Introduction to Linear Systems

I. Cramer’s Rule

2. Direct Methods to solve Linear Systems

I. Gaussian Elimination Method (GEM)
II. LU Factorization

3. Linear Stationary Iterative Methods

I. Jacobi Method
II. Gauss-Siedel Method
III. Over-Relaxation Methods (JOR) and (SOR)

4. Non-stationary Iterative Methods

I. Method of Steepest Descent
II. Conjugate Gradient Algorithm

 2 Iterative Algorithms I Nitin Kamra (IIT Delhi)

Introduction to Linear Systems
• Aim:- To solve for x in the linear system which is of the form:

Ax = b

• Order of the system = n

• Matrix A should be non-singular for unique solution to exist.

3 Iterative Algorithms I Nitin Kamra (IIT Delhi)

Cramer’s Rule
• Solution provided by Cramer’s Rule:

xi = Δi / det(A)
 Δi = Determinant of the matrix obtained by substituting the i-th

column of A by the vector b.
• Essentially equivalent to inverting the matrix A and getting x = A-1b.

• Computational effort: O((n+1)!) flops as determinants are evaluated

recursively.
• A computer able to perform 109 flops per second would need

9.6×1047 years to solve a linear system of order 50.

• Need alternate methods for solving linear systems.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 4

Direct Methods to solve Linear Equations

• Solve a set of linear equations in a finite number of steps.
• Based around triangular matrices and the fact that any system of the form:

 can be solved using Forward Substitution as follows:

• The argument can be extended for upper triangular matrices with Backward

Substitution.
• Takes n2 flops of computation.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 5

Gaussian Elimination Method (GEM)

• Aims at reducing the original system Ax = b to an equivalent system (having
the same solution x) of the form Ux = β, where U is an upper-triangular
matrix and β is the updated right hand side matrix.

• New system can be solved with Backward Substitution.
• Let the original system be A(1)x = b(1),

• Introduce the multipliers mi1,

Nitin Kamra (IIT Delhi) Iterative Algorithms I 6

Gaussian Elimination Method (GEM)

• Now define,

• We get the new system, A(2)x = b(2) as shown:

• Now x1 has been removed from all the equations except the first one.
• Similar procedure can be repeated for x2, …, xn and the left hand matrix can

be reduced to an equivalent upper-triangular matrix.

 Nitin Kamra (IIT Delhi) Iterative Algorithms I 7

Gaussian Elimination Method (GEM)

• The final upper-triangular system A(n)x = b(n) OR Ux = β looks like:

• Now we can solve the above system with Back Substitution Technique.

• Cost of computation: (2n3/3 + n2) + n2 flops = O(n3)

Nitin Kamra (IIT Delhi) Iterative Algorithms I 8

Gaussian Elimination Method (GEM):
Applicability

• Applicable only if all the coefficients mik are defined i.e. aii
(k) should be non-

zero. This can be guaranteed for:
1) Matrices diagonally dominant by rows.
2) Matrices diagonally dominant by columns.
3) Symmetric and Positive Definite Matrices.

• Positive Definiteness: Matrix A ϵ Cn×n is said to be positive definite in Cn iff
for any non-zero vector x, (Ax, x) is real and positive.

• Diagonally Symmetric by rows:

• Diagonally Symmetric by columns:

Nitin Kamra (IIT Delhi) Iterative Algorithms I 9

LU Factorization
• Write A = LU, where L = Lower triangular matrix with diagonal entries all

equal to 1, and U = Upper triangular matrix.
Ax = b LUx = b

• Similar to GEM and the entries of L and U can be obtained while carrying

out GEM.

• Now assume Ux = w Lw = b and solve for w using Forward Substitution.
Next solve for x from Ux = w using Backward Substitution.

• Computational complexity same as of GEM.
• Useful for system of equations where matrix A remains same and solution is

needed for different vectors b.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 10

Linear Iterative Methods
• Basic idea: To form a sequence of vectors x(k) that enjoys the convergence:

• Aim: To employ vectors x(k), which should be cheaply generated per
iteration and should quickly converge to x in a small number of iterations.

• Formally, iterative methods give the solution of the equation Ax = b after
infinite iterations, but in practice they are stopped for minimum value of n
such that || x(n) – x || < ϵ, where ϵ is a fixed tolerance.

• If we denote e(k) = x(k) – x, the error at the kth step of iteration, then the
condition for convergence amounts to the requirement:

 for any choice of the initial guess x(0).

Nitin Kamra (IIT Delhi) Iterative Algorithms I 11

Linear Stationary Iterative Methods

• Linear iterative methods: x(k+1) = Bx(k) + f, k ≥ 0
• B (n×n matrix): called the ‘iteration matrix’ and f: vector obtained from b.

• In order to obtain B and f, we generally split A into two parts:
 A = P – N, where P is called the Pre-conditioning matrix.

 Ax = b
 Px(k+1) = Nx(k) +b
 x(k+1) = P-1Nx(k) + P-1b
 B = P-1N and f = P-1b.

• P should be non-singular and easy to invert.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 12

Jacobi Method

• Write A as the sum of D(diagonal elements) and R(remainder)

• Then

• The algorithm can be stated as:
1. Choose x(0).
2. Repeat till convergence {

 }

Nitin Kamra (IIT Delhi) Iterative Algorithms I 13

Gauss – Siedel Method

• Write A as the sum of D(Diagonal matrix), L*(Lower-triangular matrix) and
U*(strictly Upper-triangular matrix)

• Then

• Differs from Jacobi method only in the fact that it uses the already
calculated elements of x(k+1) to update the remaining elements per iteration.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 14

Gauss – Siedel Method

• The algorithm can be stated as:
1. Choose x(0).
2. Repeat till convergence {

 }

• Pros:
– In general, results in faster convergence compared to Jacobi Method.
– No need to store previous values of xi

(k) after calculating xi
(k+1), so saves

memory.
• Cons:

– Components of x(k) can’t be updated in parallel as in Jacobi Method.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 15

Over-Relaxation Methods (JOR) & (SOR)
• JOR = Jacobi Over-Relaxation and SOR = Successive Over-Relaxation
• Generalizations of Jacobi and Gauss-Siedel Methods respectively.

• Define a relaxation parameter = ω (>0)
• We have ωAx = ωb

• For JOR, put A = D + R,
• The update relation gets modified as:

• Element – wise:

Nitin Kamra (IIT Delhi) Iterative Algorithms I 16

Over-Relaxation Methods (JOR) & (SOR)
• This can be expressed as:

• Similarly for SOR, put A = D +L*+ U*,
• The update relation gets modified as:

• Element – wise:

• This can be expressed as:

• So, in both JOR and SOR, ω scales the correction term to be added in each
update and thereby controls the rate of convergence.

• ω>1 means over-relaxation and ω<1 means under-relaxation.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 17

Convergence Results for Jacobi, Gauss-
Siedel and Over-Relaxation Methods

• If A is a strictly Diagonally Dominant Matrix by rows, the Jacobi and Gauss-
Siedel methods are convergent.

• If A and 2D – A are symmetric and positive definite matrices then Jacobi
Method is convergent.

• If A is symmetric and positive definite, Gauss-Siedel method is
monotonically convergent w.r.t. the norm ||∙||A.

• If the Jacobi method is convergent then the JOR method converges if
0<ω≤1.

• For SOR method to converge, 0<ω<2.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 18

Non-Stationary Iterative Methods
• Stationary Iterative Methods: Jacobi, Gauss – Siedel, GOR, SOR. These

had a relaxation (acceleration) parameter ω, independent of the current
iteration.

• Non-stationary Iterative Methods involve acceleration parameters which
change every iteration.

• Examples:-
– Method of Steepest Descent (Gradient Method),
– Conjugate Gradient Algorithm

• These are best suited for large matrices with many null entries per row

(Sparse Matrices).
• They might be the only methods available for Non-Linear systems.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 19

Method of Steepest Descent
• We’ll study the methods for a symmetric, positive definite matrix A i.e.
 A = AT and xTAx>0 for all non-zero vectors x.
• Consider the quadratic form energy function:

• The gradient of the function is given by:
• The extremum of this function occurs when:

• We’ll use this example: which has solution

• Consider any arbitrary point p and x = A-1b. Then for symmetric matrix A,

• Further, for positive definite matrix A, this says that f(p)≥f(x), hence x is the

minima.
• So, to solve Ax = b, we have to minimize the energy function f(x).

Nitin Kamra (IIT Delhi) Iterative Algorithms I 20

Method of Steepest Descent

Nitin Kamra (IIT Delhi) Iterative Algorithms I 21

Method of Steepest Descent
• We start at an arbitrary point x(0) and move towards the direction of steepest

descent.
• At any point, error e(i) = x(i) – x.
• Direction of steepest descent at any point x(i) is given by:
 residual r(i) = - f’(x(i)) = b – Ax(i) = -Ae(i).
• Step size = α(i). It is variable and decided every iteration to minimize error by

moving in the direction of steepest descent. For minimizing error, we have

Nitin Kamra (IIT Delhi) Iterative Algorithms I 22

Method of Steepest Descent

Nitin Kamra (IIT Delhi) Iterative Algorithms I 23

Motivation for Conjugate Gradient
• Method of Steepest Descent can take too

many iterations to converge.
• As the sequence x(k) approaches x, the

step-size α(k) decreases and the
convergence slows down.

• Motivation for conjugate Gradient:
Instead of probing repeatedly in the same
direction, if we could identify ‘n’ orthogonal
directions in which we could move only
once each the correct amount and end up
at the right position, convergence would be
very quick.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 24

Motivation for Conjugate Gradient
• Let the orthogonal search directions be d(0), d(1), …, d(n-1).
• Then x(i+1) = x(i) + α(i)d(i). For each step e(i+1) is perpendicular to d(i).
• Using this condition

• But this implies that to know α(i), we have to know e(i), which is like already
knowing the solution x.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 25

Conjugate Gradient Algorithm:
Method of Conjugate Directions

• Solution is to make the search directions A-orthogonal or conjugate i.e. for
any two directions d(i) and d(j), d(i)TAd(j) = 0.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 26

Conjugate Gradient Algorithm:
Method of Conjugate Directions

• Our new requirement is e(i+1) be A-orthogonal to d(i), which is equivalent to

finding the minimum point along the search direction d(i).

• Using the above condition, we solve for α(i),

• With the above value of α(i), it can be proved that if initial error e(0):

 then α(i) = -δ(i) which means that each step cancels a component of error in
one of the search directions d(i). Hence after n-steps all the components of
error have been nulled down and so we achieve exact convergence to x.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 27

Conjugate Gradient Algorithm:
Gram Schmidt Conjugation

• How to generate the A-orthogonal directions {d(i)}?

• Gram Schmidt Process generates {d(i)} from a set of ‘n’ linearly independent
vectors: {u(0), u(1), … , u(n-1)}. (For now the co-ordinate axes will do.)

• To construct d(i), take u(i) and subtract out any components that are not A-
orthogonal to the previous (i-1) d-vectors.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 28

Conjugate Gradient Algorithm:
Gram Schmidt Conjugation

• Βik can be found by ensuring A-orthogonality of each d(i) with each d(j) as:

• Problem: Takes O(n3) computation. Can turn into gaussian elimination.
Hence the method’s true power remained dormant till the CG algorithm was
discovered.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 29

Method of Conjugate Directions: Example

Nitin Kamra (IIT Delhi) Iterative Algorithms I 30

Method of Conjugate Directions:
Observations

1. Residual at the j-th iteration is orthogonal to all the previous directions.

 As r(j) = -Ae(j), and e(j) is A-orthogonal to d(i) for all i<j.
2. As span {d(0), d(1), … d(j-1)} = span {u(0), u(1), … , u(j-1)}, Residual at

the j-th iteration is orthogonal to all previous u(i)’s as well.

3. due to the way Gram-Schmidt process works.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 31

Conjugate Gradient Algorithm

• It is simply the method of Conjugate Directions with the directions
constructed from the conjugation of the residuals i.e. u(i) = r(i).

• Advantages:-
 As r(i) is orthogonal to all previous search directions, its guaranteed to

always produce a new linearly independent search direction, unless r(i)
= 0 in which case the problem has already been solved.

 As r(i) is orthogonal to all previous u(j)’s, its orthogonal to all previous
residuals now.

• Now observe that:
• So, r(i+1) is a linear combination of r(i) and Ad(i).
 r(i) is a linear combination of r(i-1) and Ad(i-1)

 r(i-1) …..
• As r(i+1) is orthogonal to all previous residues, this means that it is A-

orthogonal to all previous search directions except d(i).

Nitin Kamra (IIT Delhi) Iterative Algorithms I 32

Conjugate Gradient Algorithm

• This simplifies the βij coefficients
tremendously as now, there exists
only 1 such non-zero coefficient for
every iteration. So, βij is non-zero
only for j=i-1.

• Hence we call it β(i) = βi,i-1 which is
now given by:

Nitin Kamra (IIT Delhi) Iterative Algorithms I 33

Summary
1. Understood what a linear system is, and Cramer’s rule to solve it.

2. Cramer’s rule computationally very expensive - O((n+1)!), so we

studied Direct Solvers like Gaussian Elimination or LU factorization
– O(n3).

3. Next we explored stationary iterative techniques like the Jacobi
method and Gauss-Siedel methods, also their generalized
versions JOR and SOR.

4. Further, learnt about non-stationary iterative techniques like
Method of Steepest Descent and the most popular Conjugate
gradient algorithm, which gives exact solution within ‘n’ iterations.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 34

Nitin Kamra (IIT Delhi) Iterative Algorithms I 35

Nitin Kamra (IIT Delhi) Iterative Algorithms I 36

References
1. Numerical Mathematics – Alfio Quarteroni, Riccardo Sacco,

Fausto Saleri.
2. An Introduction to the Conjugate Gradient Method without the

Agonizing Pain, Edition 1(1/4) – Jonathan Richard Shewchuk,
August 4, 1994.

Figures:-
All the figures have been taken from:
1. An Introduction to the Conjugate Gradient Method without the

Agonizing Pain, Edition 1(1/4) – Jonathan Richard Shewchuk,
August 4, 1994.

Nitin Kamra (IIT Delhi) Iterative Algorithms I 37

	Iterative Algorithms I: �Elementary Iterative Methods and the Conjugate Gradient Algorithms
	Outline
	Introduction to Linear Systems
	Cramer’s Rule
	Direct Methods to solve Linear Equations
	Gaussian Elimination Method (GEM)
	Gaussian Elimination Method (GEM)
	Gaussian Elimination Method (GEM)
	Gaussian Elimination Method (GEM): �Applicability
	LU Factorization
	Linear Iterative Methods
	Linear Stationary Iterative Methods
	Jacobi Method
	Gauss – Siedel Method
	Gauss – Siedel Method
	Over-Relaxation Methods (JOR) & (SOR)
	Over-Relaxation Methods (JOR) & (SOR)
	Convergence Results for Jacobi, Gauss-Siedel and Over-Relaxation Methods
	Non-Stationary Iterative Methods
	Method of Steepest Descent
	Method of Steepest Descent
	Method of Steepest Descent
	Method of Steepest Descent
	Motivation for Conjugate Gradient
	Motivation for Conjugate Gradient
	Conjugate Gradient Algorithm: �Method of Conjugate Directions
	Conjugate Gradient Algorithm: �Method of Conjugate Directions
	Conjugate Gradient Algorithm: �Gram Schmidt Conjugation
	Conjugate Gradient Algorithm: �Gram Schmidt Conjugation
	Method of Conjugate Directions: Example
	Method of Conjugate Directions: Observations
	Conjugate Gradient Algorithm
	Conjugate Gradient Algorithm
	Summary
	Slide Number 35
	Slide Number 36
	References

