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Dynamic Graph Embedding

Dynamic Graphs

DynGEM paper accepted

Definition
Real world graphs evolve by addition and deletion of nodes and edges.
We represent a dynamic graph as a snapshot of static graphs.
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Dynamic Graph Embedding

Problem Statement

Graph Embedding
It aims to represent each vertex of a graph in a low dimensional space
Rd while preserving certain properties of a graph, i.e., it learns the
function fG : V → Rd, where d� |V |.

Dynamic Graph Embedding

It extends the concept of embedding to dynamic graphs. Given a
dynamic graph G, a dynamic graph embedding is a time series of
mappings F = {f1, . . . , fT } such that mapping ft is a graph
embedding for Gt and all mappings preserve the proximity measure for
their respective graphs.

(University of Southern California) DynGEM August 14, 2017 5 / 18



Dynamic Graph Embedding

Problem Statement

Graph Embedding
It aims to represent each vertex of a graph in a low dimensional space
Rd while preserving certain properties of a graph, i.e., it learns the
function fG : V → Rd, where d� |V |.

Dynamic Graph Embedding

It extends the concept of embedding to dynamic graphs. Given a
dynamic graph G, a dynamic graph embedding is a time series of
mappings F = {f1, . . . , fT } such that mapping ft is a graph
embedding for Gt and all mappings preserve the proximity measure for
their respective graphs.

(University of Southern California) DynGEM August 14, 2017 5 / 18



Dynamic Graph Embedding

Possible Solutions and Challenges

Apply static embedding algorithm at each time step
Problem: Non-unique embedding

Realign embeddings at consecutive time steps
May work for factorization based models
Problem: Linear alignment will give sub-par performance on
non-linear embedding approaches
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Model

Embedding Stability

Srel(F ; t) =
‖Ft+1(Vt)− Ft(Vt)‖F

‖Ft(Vt)‖F

/
‖St+1(Vt)− St(Vt)‖F

‖St(Vt)‖F

Relative change in embedding
Relative change in graph

KS(F) = max
τ,τ ′
|Srel(F ; τ)− Srel(F ; τ ′)|.
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Model

Dynamic Graph Embedding Model (DynGEM)
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Model

Handling Growing Graphs

Addition of nodes in the graph may require additional model
parameters
Get width hidden layers using PropSize heuristic

size(lk+1) ≥ ρ× size(lk)
Deepen the model if PropSize is not satisfied for embedding layer
Adopt Net2WiderNet and Net2DeeperNet to expand the
autoencoder
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Model

Algorithm 1: Algorithm: DynGEM
Input: Gt = (Vt, Et), Gt−1 = (Vt−1, Et−1), Yt−1, θt−1
Output: Embedding Yt
From Gt, generate adjacency matrix S, penalty matrix B
Create the autoencoder model with initial architecture
Initialize θt randomly if t = 1, else θt = θt−1
if |Vt| > |Vt−1| then

Compute new layer sizes with PropSize heuristic
Expand autoencoder layers and/or insert new layers

end if
Create set S = {(si, sj)} for each e = (vi, vj) ∈ Et
for i = 1, 2, . . . do

Sample a minibatch M from S
Compute gradients ∇θtLnet of objective Lnet on M
Do gradient update on θt with nesterov momentum

end for
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Experimental Results

Datasets

Synthetic Data (SYN)
Generated using Stochastic Block Model
1000 nodes, 79,800-79,910 edges

High Energy Physics (HEP-TH)
Author collaboration network
1,424-7,980 nodes, 2,556-21,036 edges

Autonomous Systems (AS)
Router communication network
7716 nodes, 10,695-26,46 edges

Enron (ENRON)
Email network
184 nodes, 63-591 edges
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Experimental Results

Visualization

(a) DynGEM time step with 5 nodes
jumping out of 1000

(b) DynGEM time step with 300
nodes jumping out of 1000
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Experimental Results

Graph Reconstruction

Reconstruct graph edges using decoder
Rank pairs of vertices according to reconstructed proximity

SYN HEP-TH AS ENRON
GFalign 0.119 0.49 0.164 0.223
GFinit 0.126 0.52 0.164 0.31

SDNEalign 0.124 0.04 0.07 0.141
SDNE 0.987 0.51 0.214 0.38

DynGEM 0.987 0.491 0.216 0.424

Table: Average MAP of graph reconstruction.
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Experimental Results

Link Prediction

Randomly hide 15% of network edges at time t
Train the model using graph snapshots till time t
Test the prediction using hidden edges

SYN HEP-TH AS ENRON
GFalign 0.027 0.04 0.09 0.021
GFinit 0.024 0.042 0.08 0.017

SDNEalign 0.031 0.17 0.1 0.06
SDNE 0.034 0.1 0.09 0.081

DynGEM 0.194 0.26 0.21 0.084

Table: Average MAP of link prediction.
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Experimental Results

Anomaly Detection

Detected anomalies in Enron by thresholding norm of change in
consecutive embeddings

Week 93

Week 101

Week 94
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Experimental Results

Stability and Scalability

Computed stability constant and speedup achieved

SYN HEP-TH AS ENRON
SDNE 0.18 14.715 6.25 19.722

SDNEalign 0.11 8.516 2.269 18.941
DynGEM 0.008 1.469 0.125 1.279

Table: Stability constants KS(F ) of embeddings on dynamic graphs.

SYN HEP-TH AS ENRON
SDNEalign 56.6 min 71.4 min 210 min 7.69 min
DynGEM 13.8 min 25.4 min 80.2 min 3.48 min
Speedup 4.1 2.81 2.62 2.21

Speedupexp 4.8 3 3 3

Table: Computation time of embedding methods.
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Conclusion

Conclusion

Developed a model that can embed a dynamic graph in vector
space
Introduced the concept of stability in dynamic graph embedding
Extended the model to handle growing graphs
Experiments on graph reconstruction, link prediction, stability,
scalability and anomaly detection show benefits over existing
approaches
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Conclusion

Questions?
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