DynGEM: Deep Embedding Method for Dynamic Graphs

Palash Goyal, Nitin Kamra¹, Xinran He, Yan Liu

Department of Computer Science University of Southern California

August 14, 2017

¹Nitin Kamra and Palash Goyal have equal contribution --> <--->

(University of Southern California)

DynGEM

August 14, 2017 1 / 18

Outline

Dynamic Graph Embedding

э

Dynamic Graphs

Definition

Real world graphs evolve by addition and deletion of nodes and edges. We represent a dynamic graph as a snapshot of static graphs.

Dynamic Graph Embedding

・ロト ・ 四ト ・ ヨト ・ ヨト

SVD based models [Belkin and Niyogi, 2001; Roweis and Saul, 2000; Tenerbaum et al., 2000; Cao et al., 2015; Ou et al. 2016] which decompose the Lathering or high order ad.

August 14, 2017 4/18

Problem Statement

Graph Embedding

It aims to represent each vertex of a graph in a low dimensional space \mathbb{R}^d while preserving certain properties of a graph, i.e., it learns the function $f_G: V \to \mathbb{R}^d$, where $d \ll |V|$.

Problem Statement

Graph Embedding

It aims to represent each vertex of a graph in a low dimensional space \mathbb{R}^d while preserving certain properties of a graph, i.e., it learns the function $f_G: V \to \mathbb{R}^d$, where $d \ll |V|$.

Dynamic Graph Embedding

It extends the concept of embedding to dynamic graphs. Given a dynamic graph G, a dynamic graph embedding is a time series of mappings $F = \{f_1, \ldots, f_T\}$ such that mapping f_t is a graph embedding for G_t and all mappings preserve the proximity measure for their respective graphs.

< ロ > < 同 > < 回 > < 回 >

Possible Solutions and Challenges

- Apply static embedding algorithm at each time step
 - Problem: Non-unique embedding

3 > 4 3

Possible Solutions and Challenges

- Apply static embedding algorithm at each time step
 - Problem: Non-unique embedding
- Realign embeddings at consecutive time steps
 - May work for factorization based models
 - Problem: Linear alignment will give sub-par performance on non-linear embedding approaches

< ロ > < 同 > < 回 > < 回 >

Embedding Stability

$$S_{rel}(\mathcal{F};t) = \frac{\|F_{t+1}(V_t) - F_t(V_t)\|_F}{\|F_t(V_t)\|_F} / \frac{\|S_{t+1}(V_t) - S_t(V_t)\|_F}{\|S_t(V_t)\|_F}$$

- Relative change in embedding
- Relative change in graph

$$K_{\mathcal{S}}(\mathcal{F}) = \max_{\tau,\tau'} |\mathcal{S}_{rel}(F;\tau) - \mathcal{S}_{rel}(F;\tau')|.$$

(University of Southern California)

August 14, 2017 7 / 18

-

Embedding Stability

$$S_{rel}(\mathcal{F};t) = \frac{\|F_{t+1}(V_t) - F_t(V_t)\|_F}{\|F_t(V_t)\|_F} / \frac{\|S_{t+1}(V_t) - S_t(V_t)\|_F}{\|S_t(V_t)\|_F}$$

• Relative change in embedding
• Relative change in graph

$$K_{\mathcal{S}}(\mathcal{F}) = \max_{\tau,\tau'} |\mathcal{S}_{rel}(F;\tau) - \mathcal{S}_{rel}(F;\tau')|.$$

(University of Southern California)

August 14, 2017 7 / 18

2

イロト イヨト イヨト イヨト

Embedding Stability

$$S_{rel}(\mathcal{F};t) = \frac{\|F_{t+1}(V_t) - F_t(V_t)\|_F}{\|F_t(V_t)\|_F} / \frac{\|S_{t+1}(V_t) - S_t(V_t)\|_F}{\|S_t(V_t)\|_F}$$
• Relative change in embedding
• Relative change in graph
$$K_S(\mathcal{F}) = \max |S_{rel}(F;\tau) - S_{rel}(F;\tau')|.$$

$$K_{\mathcal{S}}(\mathcal{F}) = \max_{\tau,\tau'} |\mathcal{S}_{rel}(F;\tau) - \mathcal{S}_{rel}(F;\tau')|.$$

(University of Southern California)

7/18 August 14, 2017

2

イロト イヨト イヨト イヨト

Model

Dynamic Graph Embedding Model (DynGEM)

(University of Southern California)

August 14, 2017 8 / 18

Handling Growing Graphs

- Addition of nodes in the graph may require additional model parameters
- Get width hidden layers using PropSize heuristic

• $size(l_{k+1}) \ge \rho \times size(l_k)$

- Deepen the model if *PropSize* is not satisfied for embedding layer
- Adopt *Net2WiderNet* and *Net2DeeperNet* to expand the autoencoder

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Model

Algorithm 1: Algorithm: DynGEM

Input:
$$G_t = (V_t, E_t), G_{t-1} = (V_{t-1}, E_{t-1}), Y_{t-1}, \theta_{t-1}$$

Output: Embedding Y_t

From G_t , generate adjacency matrix S, penalty matrix BCreate the autoencoder model with initial architecture Initialize θ_t randomly if t = 1, else $\theta_t = \theta_{t-1}$

if
$$|V_t| > |V_{t-1}|$$
 then

Compute new layer sizes with PropSize heuristic

Expand autoencoder layers and/or insert new layers end if

Create set
$$S = \{(s_i, s_j)\}$$
 for each $e = (v_i, v_j) \in E_t$

for i = 1, 2, ... do

Sample a minibatch M from S

Compute gradients $\nabla_{\theta_t} L_{net}$ of objective L_{net} on MDo gradient update on θ_t with nesterov momentum end for

- The second sec

Datasets

Synthetic Data (SYN)

- Generated using Stochastic Block Model
- 1000 nodes, 79,800-79,910 edges

High Energy Physics (HEP-TH)

- Author collaboration network
- 1,424-7,980 nodes, 2,556-21,036 edges

Autonomous Systems (AS)

- Router communication network
- 7716 nodes, 10,695-26,46 edges

Enron (ENRON)

- Email network
- 184 nodes, 63-591 edges

4 A N

Visualization

(a) DynGEM time step with 5 nodes jumping out of 1000

(b) DynGEM time step with 300 nodes jumping out of 1000

August 14, 2017 12 / 18

Graph Reconstruction

- Reconstruct graph edges using decoder
- Rank pairs of vertices according to reconstructed proximity

	SYN	HEP-TH	AS	ENRON
GF_{align}	0.119	0.49	0.164	0.223
GF _{init}	0.126	0.52	0.164	0.31
$SDNE_{align}$	0.124	0.04	0.07	0.141
SDNE	0.987	0.51	0.214	0.38
DynGEM	0.987	0.491	0.216	0.424

Table: Average MAP of graph reconstruction.

Link Prediction

- Randomly hide 15% of network edges at time t
- Train the model using graph snapshots till time t
- Test the prediction using hidden edges

	SYN	HEP-TH	AS	ENRON
GF_{align}	0.027	0.04	0.09	0.021
GF_{init}	0.024	0.042	0.08	0.017
$SDNE_{align}$	0.031	0.17	0.1	0.06
SDNE	0.034	0.1	0.09	0.081
DynGEM	0.194	0.26	0.21	0.084

Table: Average MAP of link prediction.

Anomaly Detection

 Detected anomalies in Enron by thresholding norm of change in consecutive embeddings

(University of Southern California)

Stability and Scalability

• Computed stability constant and speedup achieved

	SYN	HEP-TH	AS	ENRON
SDNE	0.18	14.715	6.25	19.722
SDNE _{align}	0.11	8.516	2.269	18.941
DynGEM	0.008	1.469	0.125	1.279

Table: Stability constants $K_{\mathcal{S}}(F)$ of embeddings on dynamic graphs.

	SYN	HEP-TH	AS	ENRON
SDNE _{align}	56.6 min	71.4 min	210 min	7.69 min
DynGEM	13.8 min	25.4 min	80.2 min	3.48 min
Speedup	4.1	2.81	2.62	2.21
Speedupexp	4.8	3	3	3

Table: Computation time of embedding methods.

(University of Southern California)

・ロト ・ 四ト ・ ヨト ・ ヨト

Conclusion

- Developed a model that can embed a dynamic graph in vector space
- Introduced the concept of stability in dynamic graph embedding
- Extended the model to handle growing graphs
- Experiments on graph reconstruction, link prediction, stability, scalability and anomaly detection show benefits over existing approaches

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Questions?

August 14, 2017 18 / 18

2

イロト イヨト イヨト イヨト