
DeepFP for Finding Nash Equilibrium in
Continuous Action Spaces

Nitin Kamra1[0000−0002−5205−6220], Umang Gupta1, Kai Wang1, Fei Fang2, Yan
Liu1, and Milind Tambe3

1 University of Southern California, Los Angeles, CA 90089, USA
{nkamra,umanggup,wang319,yanliu.cs}@usc.edu

2 Carnegie Mellon University, Pittsburgh, PA 15213, USA
feifang@cmu.edu

3 Harvard University, Cambridge, MA 02138, USA
milind.tambe11@gmail.com

Abstract. Finding Nash equilibrium in continuous action spaces is a
challenging problem and has applications in domains such as protect-
ing geographic areas from potential attackers. We present DeepFP, an
approximate extension of fictitious play in continuous action spaces.
DeepFP represents players’ approximate best responses via generative
neural networks which are highly expressive implicit density approxi-
mators. It additionally uses a game-model network which approximates
the players’ expected payoffs given their actions, and trains the networks
end-to-end in a model-based learning regime. Further, DeepFP allows us-
ing domain-specific oracles if available and can hence exploit techniques
such as mathematical programming to compute best responses for struc-
tured games. We demonstrate stable convergence to Nash equilibrium
on several classic games and also apply DeepFP to a large forest secu-
rity domain with a novel defender best response oracle. We show that
DeepFP learns strategies robust to adversarial exploitation and scales
well with growing number of players’ resources.

Keywords: Security Games · Nash Equilibrium · Fictitious Play.

1 Introduction

Computing equilibrium strategies is a major computational challenge in game
theory and finds numerous applications in economics, planning, security domains
etc. We are motivated by security domains which are often modeled as Stack-
elberg Security Games (SSGs) [24,5,13]. Since Stackelberg Equilibrium, a com-
monly used solution concept in SSGs, coincides with Nash Equilibrium (NE) in
zero-sum security games and in some structured general-sum games [17], we fo-
cus on the general problem of finding mixed strategy Nash Equilibrium. Security
domains often involve protecting geographic areas thereby leading to continuous
action spaces [3,26]. Most previous approaches discretize players’ continuous ac-
tions [27,11,9] to find equilibrium strategies using linear programming (LP) or



2 N. Kamra et al.

mixed-integer programming (MIP). However, a coarse discretization suffers from
low solution quality and a fine discretization makes it intractable to compute
the optimal strategy using mathematical programming techniques, especially in
high-dimensional action spaces. Some approaches exploit spatio-temporal struc-
tural regularities [6,28,4] or numerically solve differential equations in special
cases [13], but these do not extend to general settings.

We focus on algorithms more amenable to tractable approximation in contin-
uous action spaces. Fictitious Play (FP) is a classic algorithm studied in game
theory and involves players repeatedly playing the game and best responding to
each other’s history of play. FP converges to a NE for specific classes of discrete
action games [18] and its variants like Stochastic Fictitious Play and Generalized
Weakened Fictitious Play converge under more diverse settings [25,23,20] under
reasonable regularity assumptions over underlying domains. While FP applies
to discrete action games with exact best responses, it does not trivially extend
to continuous action games with arbitrarily complex best responses.

In this work, we present DeepFP, an approximate fictitious play algorithm for
two-player games with continuous action spaces. The key novelties of DeepFP
are: (a) It represents players’ approximate best responses via state-of-the-art
generative neural networks which are highly expressive implicit density approx-
imators with no shape assumptions on players’ action spaces, (b) Since implicit
density models cannot be trained directly, it also uses a game-model network
which is a differentiable approximation of the players’ payoffs given their ac-
tions, and trains these networks end-to-end in a model-based learning regime,
and (c) DeepFP allows replacing these networks with domain-specific oracles if
available. This allows working in the absence of gradients for player/(s) and ex-
ploit techniques from research areas like mathematical programming to compute
best responses. We also apply DeepFP to a forest security problem with a novel
defender best response oracle designed for this domain. The proposed oracle is
another novel contribution of this work and may also be of interest in its own
right for the forest protection domain.

Related work: Previous approaches to find equilibria in continuous action
spaces have employed variants of cournot adjustment strategy [1] but suffer from
convergence issues [14]. Variants of FP either require explicit maximization of
value functions over the action set as in Fictitious Self-Play [12] or maintaining
complex hierarchies of players’ past joint strategies as in PSRO [19], which is
only feasible with finite and discrete action sets (e.g. poker) and does not gener-
alize to continuous action spaces. Since it is challenging to maintain distributions
over continuous action spaces, recent works in multiagent reinforcement learn-
ing (RL) [21] often assume explicit families of distributions for players’ strategies
which may not span the space of strategies to which NE distributions belong.
More recently update rules which modify gradient descent using second-order dy-
namics of multi-agent games have been proposed [2]. The closest method to our
approach is OptGradFP [15] which assumes a multivariate logit-normal distri-
bution for players’ strategies. We show that due to explicit shape assumptions,
it suffers from lack of representational power and is prone to diverging since



Deep Fictitious Play 3

logit-normal distributions concentrate in some parts of the action space often
yielding −∞ log-probabilities in other parts. DeepFP addresses the lack of rep-
resentational power by using flexible implicit density approximators. Further,
our model-based training proceeds without any likelihood estimates and hence
does not yield −∞ log-likelihoods in any parts of the action space, thereby con-
verging stably. Moreover, unlike OptGradFP, DeepFP is an off-policy algorithm
and trains significantly faster by directly estimating expected rewards using the
game model network instead of replaying previously stored games.

2 Game Model

We consider a two-player game with continuous action sets for players 1 and 2.
We will often use the index p ∈ {1, 2} for one of the players and −p for the
other player. Up denotes the compact, convex action set of player p. We denote
the probability density for the mixed strategy of player p at action up ∈ Up
as σp(up) ≥ 0 s.t.

∫
Up
σp(up)dup = 1. We denote player p sampling an action

up ∈ Up from his mixed strategy density σp as up ∼ σp. We denote joint actions,
joint action sets and joint densities without any player subscript i.e. as u =
(u1, u2), U = U1 × U2 and σ = (σ1, σ2) respectively.

Each player has a bounded and Lipschitz continuous reward function rp :
U → R. For zero-sum games, rp(u) + r−p(u) = 0 ∀u ∈ U . With players’ mixed
strategy densities σp and σ−p, the expected reward of player p is:

Eu∼σ[rp] =

∫
Up

∫
U−p

rp(u)σp(up)σ−p(u−p)dupdu−p.

The best response of player p against player −p’s current strategy σ−p is defined
as the set of strategies which maximizes his expected reward:

BRp(σ−p) := arg max
σp

{
Eu∼(σp,σ−p)[rp]

}
.

A pair of strategies σ∗ = (σ∗1 , σ
∗
2) is said to be a Nash equilibrium if neither

player can increase his expected reward by changing his strategy while the other
player sticks to his current strategy. In such a case both these strategies belong
to the best response sets to each other:

σ∗1 ∈ BR1(σ∗2) and σ∗2 ∈ BR2(σ∗1).

3 Deep Fictitious Play

To compute NE for a game, we introduce an approximate realization of fictitious
play in high-dimensional continuous action spaces, which we call Deep Fictitious
Play (DeepFP). Let the density function corresponding to the empirical distri-
bution of player p’s previous actions (a.k.a. belief density) be σ̄p. Then fictitious
play involves player p best responding to his opponent’s belief density σ̄−p:

BRp(σ̄−p) := arg max
σp

{
Eu∼(σp,σ̄−p)[rp]

}
.



4 N. Kamra et al.

Repeating this procedure for both players is guaranteed to converge to the Nash
equilibrium densities for both players for certain classes of games [18]. Hence
extending Fictitious Play to continuous action spaces requires approximations
for two essential ingredients: (a) belief densities over players’ actions, and (b)
best responses for each player.

(a) Sampling actions from the
best response network (b) Learning game model network parame-

ters φ

(c) Learning best response network parameters θp

Fig. 1: Neural network models for DeepFP; Blue color denotes player p, red denotes
his opponent −p, green shows the game model network and violet shows loss functions
and gradients.

3.1 Approximating belief densities

Representing belief densities compactly is challenging in continuous action spaces.
However with an appropriate approximation to Fictitious Play, one can get away
with a representation which only requires sampling from the belief density but
never explicitly calculating the density at any point in the action space. Our
DeepFP is one such approximation and hence we maintain the belief density σ̄p
of each player p via a non-parameterized population based estimate i.e. via a



Deep Fictitious Play 5

simple memory of all actions played by p so far. Directly sampling up from the
memory gives an unbiased sample from σ̄p.

3.2 Approximating best responses

Computing exact best responses is intractable for most games. But when the
expected reward for a player p is differentiable w.r.t. the player’s action up and
admits continuous and smooth derivatives, approximate best responses are feasi-
ble. One way is to use the gradient of reward to update the action up iteratively
using gradient ascent till it converges to a best response. Since the best response
needs to be computed per iteration of FP, employing inner iterations of gradient
descent can be expensive. However since the history of play for players doesn’t
change too much between iterations of FP, we expect the same of best responses.
Consequently we approximate best responses with function approximators (e.g.,
neural networks) and keep them updated with a single gradient ascent step (also
done by [8]). We propose a best response network for each player p which maps an
easy to sample dp-dimensional random variable Zp ∈ Rdp (e.g. Zp ∼ N (0, Idp))
to the player’s action up. By learning an appropriate mapping BRp(zp; θp) pa-
rameterized by weights θp, it can approximate any density in the action space
Up (figure 1a). Note that this is an implicit density model i.e. one can draw
samples of up by sampling zp ∼ PZp

(·) and then computing BRp(zp; θp), but no
estimate of the density is explicitly available. Further, best response networks
maintain stochastic best responses since they lead to smoother objectives for
gradient-based optimization. Using them is common practice in policy-gradient
and actor-critic based RL since deterministic best responses often render the
algorithm unstable and brittle to hyperparameter settings (also shown by [10]).

To learn θp we need to approximate the expected payoff of player p given by
E(up∼BRp(·;θp),u−p∼σ̄−p)[rp] as a differentiable function of θp. However a differ-
entiable game model is generally not available a priori, hence we also maintain
a game model network which takes all players’ actions i.e. {up, u−p} as inputs
and predicts rewards {r̂p, r̂−p} for each player. This can either be pre-trained or
learnt simultaneously with the best response networks directly from gameplay
data (figure 1b). Coupled with a shared game model network, the best response
networks of players can be trained to approximate best responses to their oppo-
nent’s belief densities (σ̄−p) (figure 1c). The training procedure is discussed in
detail in Section 3.3.

When the expected reward is not differentiable w.r.t. players’ actions or the
derivatives are zero in large parts of the action space, DeepFP can also employ
approximate best response oracle (BROp) for player p. The oracle can be a non-
differentiable approximation algorithm employing Linear Programming (LP) or
Mixed Integer Programming (MIP) and since it will not be trained, it can also
be deterministic. In many security games, Mixed-integer programming based
algorithms are proposed to compute best responses and our algorithm provides
a novel way to incorporate them as subroutines in a deep learning framework,
as opposed to most existing works which require end-to-end differentiable policy
networks and cannot utilize non-differentiable solutions even when available.



6 N. Kamra et al.

3.3 DeepFP

Algorithm 1 shows the DeepFP pseudocode. DeepFP randomly initializes any
best response networks and game model network (if needed) and declares an
empty memory (mem) to store players’ actions and rewards [lines 1-2].

Algorithm 1: DeepFP

Data: max games, batch sizes (m1,m2,mG), memory size E, game simulator
and oracle BROp for players with no gradient

Result: Final belief densities σ̄∗p in mem ∀ players p
1 Initialize all network parameters (θ1, θ2, φ) randomly;
2 Create empty memory mem of size E;
3 for game ∈ {1, . . . , max games} do

/* Obtain best responses */

4 for each player p do
5 if grad avlbl(p) then
6 Sample zp ∼ N (0, I);
7 Approx. best response up = BRp(zp; θp);

8 else
9 up = BROp(σ̄−p) with σ̄−p from mem;

/* Play game and update memory */

10 Play with u = {u1, u2} to get r = {r1, r2};
11 Store sample {u, r} in mem;

/* Train shared game model net */

12 if grad avlbl(p) for any p ∈ {1, 2} then
13 Draw samples {ui, ri}i=1:mG from mem;

14 φ := Adam.min(LMSE , φ, {ui, ri}i=1:mG);

/* Train best response nets */

15 for each player p with grad avlbl(p) do
16 Draw samples {ui}i=1:mp from mem;

17 θp := Adam.min(Lrp , θp, {ui
−p}i=1:mp);

Then it iteratively makes both players best respond to the belief density of
their opponent. This best response can be computed per player p via a forward
pass of the best response network BRp or via a provided oracle BROp or if
gradients are not available [lines 4-9]. The best response moves and the rewards
obtained by playing them are stored in mem [lines 10-11]. Samples from exact
belief density σ̄ of both players are available from mem.

The game model network is also trained simultaneously to learn a differen-
tiable reward model of the game [lines 12-14]. It takes all players’ actions u as
input and predicts the game rewards r̂(u;φ) for all players. Its parameters φ can
be learnt by minimizing the mean square error loss over a minibatch of samples
{ui}i=1:mG

from mem, using any optimizer (we use Adam [16]):



Deep Fictitious Play 7

LMSE(φ) =
1

2mG

∑
p∈{1,2}

mG∑
i=1

(r̂p(u
i;φ)− rip)2.

The advantage of estimating this differentiable reward model independent of
playing strategies is that it can be trained from the data in replay memory
without requiring importance sampling, hence it can be used as a proxy for the
game simulator to train the best response networks. An alternative could be to
replay past actions of players using the game simulator as done by [15], but it is
much slower (see section 4.2).

Finally each player updates their best response network to keep it a reason-
able approximation to the best response to his opponent’s belief density [lines
15-17]. For this, each player p maximizes his expected predicted reward r̂p (or
minimizes expected −r̂p) against the opponent’s belief density σ̄−p (see figure
1c) using any optimizer (we use Adam):

Lrp(θp) = −E(zp∼N (0,I),u−p∼σ̄−p)[r̂p(BRp(zp; θp), u−p;φ)].

The expectation is approximated using a minibatch of samples {ui−p}i=1:mp

drawn from mem and {zip}i=1:mp
independently sampled from a standard normal

distribution. In this optimization, φ is held constant and the gradient is only
evaluated w.r.t. θp and the updates applied to the best response network. In
this sense, the game model network acts like a critic to evaluate the best re-
sponses of player p (actor) against his opponent’s belief density σ̄−p similar to
actor-critic methods [22]. However, unlike actor-critic methods we train the best
response and the game model networks in separate decoupled steps which po-
tentially allows replacing them with pre-trained models or approximate oracles,
while skipping their respective learning steps.

3.4 Connections to Boltzmann actor-critic and convergence of
DeepFP

DeepFP is closely related to the Boltzmann actor-critic process proposed by
Generalized Weakened Fictitious Play (GWFP) [20], which converges to the
NE under certain assumptions. But it differs in two crucial aspects: (i) GWFP
requires assuming explicit probability densities and involves weakened ε-best
responses which are updated via a Boltzmann actor-critic process. Since we
store the empirical belief densities and best responses as implicit densities, a
Boltzmann-style strategy update is infeasible, (ii) GWFP also requires the ε-
best responses to eventually become exact (i.e. when limn→∞ εn → 0). Since we
are approximating stochastic best responses via generative neural networks (or
with approximate oracles), this assumption may not always hold exactly. Nev-
ertheless, with our approximate best responses and with the one-step gradient
updates best response networks, we empirically observed that DeepFP converges
for multiple games with continuous reward functions wherever GWFP converges.
At convergence, the belief density σ̄∗ in mem is a non-parametric approximation
to a NE density for both players.



8 N. Kamra et al.

(a) Concave-convex game (b) Cournot game

(c) Concave-convex game (d) Cournot game

Fig. 2: DeepFP on simple games under three settings: When both players learn BR nets
(top), player 1 uses BR oracle (mid), and when both players use BR oracle (bottom); (a)
and (b) Expected reward of player 1 converges to the true equilibrium value (shown by
dashed line) for both games; (c) and (d) Final empirical density for player 1 approaches
NE strategy for both games (shown by blue triangle on horizontal axis).



Deep Fictitious Play 9

4 Experimental Evaluation

4.1 Simple games

We first evaluate DeepFP on two simple games where traditional fictitious play
is known to converge, as potential sanity checks and to demonstrate convergence
to nash equilibrium.

Concave-Convex game: Two players 1 and 2 with scalar actions x, y ∈
[−2, 2] respectively play to maximize their rewards: r1(x, y) = −2x2 +4xy+y2−
2x − 3y + 1 and r2(x, y) = −r1(x, y). The game is concave w.r.t. x and convex
w.r.t. y and admits a pure strategy NE which can be computed using standard
calculus. The NE strategies are x = 1/3, y = 5/6, the expected equilibrium
rewards are r∗1 = −r∗2 = −7/12 and the best responses of players to each others’
average strategies are BR1(ȳ) = ȳ − 1/2 and BR2(x̄) = 3/2− 2x̄.

Cournot game: It is a classic game [7] with two competing firms (1 and
2) producing a quantity (q1 ≥ 0 and q2 ≥ 0 resp.) of a product. The price of
the product is p(q1, q2) = a − q1 − q2 and the cost of manufacturing quantity q
is C(q) = cq, where c, a > 0 are constants. Reward for a firm p is Rp(q1, q2) =
(a − q1 − q2)qp − cqp, p ∈ {1, 2} and the best response against the competing

firm’s choice can be analytically computed as q−p is BRp(q−p) =
a−c−q−p

2 . The
NE strategy can be computed as q∗1 = q∗2 = a−c

3 . We use a = 2 and c = 1 for our
experiment so that q∗1 = q∗2 = 1/3.

Figure 2 shows the results of DeepFP to these games and its convergence to
the NE for all variants i.e. when both, exactly one, or no player uses the best
response oracle. Note that both players using the best response oracle (bottom
case in all subfigures) is the same as exact fictitious play and converges very fast
as opposed to other cases (top and mid in all subfigures) since the latter variants
require estimating the best responses from repeated gameplay.

4.2 Forest protection game

(a) (b)

Fig. 3: Forest game with trees (green dots), guards (blue dots), guard radii Rg (blue
circles), lumberjacks (red dots), lumberjack chopping radii Rl (red circles), lumberjacks’
paths (red lines) and black polygons (top weighted capture-sets for guards): (a) With
m=n=3, (b) Best response oracle for 3 guards and 15 lumberjacks.



10 N. Kamra et al.

For a large application of DeepFP, we choose the forest protection game as
proposed by [15] with a Defender (D) and an Adversary (A). Consider a circular
forest with an arbitrary tree distribution. The adversary has n lumberjacks who
cross the boundary and move straight towards the forest center. They can stop
at any point on their path, chop trees in a radius Rl around the stopping point
and exit back from their starting location. The adversary’s action is then all the
stopping points for lumberjacks (which fully specifies their trajectories). The
defender has m guards whose locations in the forest can be chosen to ambush
the lumberjacks. A lumberjack whose trajectory comes within Rg distance from
any guard’s location is considered ambushed and loses all his chopped trees and
bears a penalty rpen. The final reward for adversary (rA ∈ R) is the number of
trees jointly stolen by the lumberjacks plus the total negative penalty incurred.
The defender’s reward is rD = −rA. A full game is shown in figure 3a. In
our experiments we use the following settings for the game: rpen = 4.0, Rg =
0.1, Rl = 0.04.

Approximate best response oracle: Note that if guards’ locations do not
overlap significantly with those of lumberjacks then changing them by a small
amount does not affect the rewards for either player since no extra lumber-
jacks are ambushed. Hence, the gradient of reward w.r.t. defender’s parameters
(∇θDr) ≈ 0 over most of the action space. But the gradients for the adversary
are continuous and non-zero because of the dense tree distribution. Hence we
apply DeepFP to this game with a best response network for the adversary and
an approximate domain-specific best response oracle for the defender. Devising
a defender’s best response to the adversary’s belief distribution is non-trivial for
this game, and we propose a greedy approximation for it4. Briefly, the oracle al-
gorithm involves creating capture-sets for lumberjack locations l encountered so
far in mem and intersecting these capture-sets to find those which cover multiple
lumberjacks. Then it greedily allocates guards to the top m such capture-sets one
at a time, while updating the remaining capture-sets simultaneously to account
for the lumberjacks ambushed by the current guard allocation. We illustrate an
oracle best response in figure 3b.

Baselines: Since the forest protection game involves arbitrary tree density
patterns, the ground truth equilibria are intractable. So we evaluate DeepFP by
comparing it with OptGradFP [15] and to another approximate discrete linear
programming method (henceforth called DLP).

DLP baseline: We propose DLP which discretizes the action space of play-
ers and solves a linear programming problem to solve the game approximately
(but only for small m and n). The DLP method discretizes the action space in
cylindrical coordinates with 20 radial bins and 72 angular bins, which gives a
joint action space of size (72× 20)m+n. For even a single guard and lumberjack,
this implies about 2 million pure strategies. Hence, though DLP gives the ap-
proximate ground truth for m=n=1 due to our fine discretization, going beyond
m or n > 1 is infeasible with DLP. The DLP baseline proceeds in two steps:

4 The full oracle algorithm and the involved approximations are detailed in the ap-
pendix to keep the main text concise and continuous.



Deep Fictitious Play 11

1. We generate 72 × 20 = 1440 cylindrically discretized bins and compute a
matrix R ∈ R1440×1440 where Rij characterizes the defender’s reward with a
guard in the i-th bin and a lumberjack in the j-th bin. Each entry Rij is com-
puted by averaging the game simulator’s reward over 20 random placements
of the guard and lumberjack inside the bins.

2. Next we solve the following optimization problem for the defender:

σ∗, χ∗ = arg max
σ≥0,χ

χ

s.t. σTR:j ≥ χ ∀j
1440∑
i=1

σi = 1

Note that χ represents the defender’s reward, σi is the i-th element of σ ∈
[0, 1]1440 i.e. the probability of placing the guard in the i-th bin and R:j is the
j-th column of R corresponding to the adversary taking action j. The above
problem maximizes the defender’s reward subject to the constraints that σ
has all non-negative elements summing to 1 (since it’s a distribution over
all bins) and the defender’s reward χ is least exploitable regardless of the
adversary’s placement in any bin j. Solving it gives us the optimal defender
distribution σ∗ over all bins to place the guard and the equilibrium reward
for the defender χ∗ when m=n=1.

Fixed Hyperparameters: We set max games = E = 40000 to provide
enough iterations to DeepFP and OptGradFP for convergence. The batch sizes
for DeepFP are set to mD = 3 (kept small to have a fast oracle), mA = 64,mG =
128 (large for accurate gradient estimation). For full neural network architectures
used, please refer to the appendix.

Exploitability analysis: Since direct computation of the ground truth equi-
librium is infeasible for a forest, we compare all methods by evaluating the ex-
ploitability of the defender’s final strategy as NE strategies are least exploitable.
For this, we designed an evolutionary algorithm to compute the adversary’s best
response to the defender’s final strategy. It maintains a population (size 50) of
adversary’s actions and iteratively improves it by selecting the best 10 actions,
duplicating them four-fold, perturbing the duplicate copies with gaussian noise
(whose variance decays over iterations) and re-evaluating the population against
the defender’s final strategy. This evolutionary procedure is independent of any
discretization or neural network and outputs the adversary action which exploits
the defender’s final strategy most heavily. We denote the reward achieved by the
top action in the population as the exploitability ε and report the exploitability
of the defender’s strategy averaged across 5 distinct runs of each method (dif-
fering only in the initial seed). Since rewards can differ across forests due to the
number of trees in the forest and their distribution, the exploitability of each
forest can differ considerably. Also, since the evolutionary algorithm requires
150K− 300K game plays per run, it is quite costly and only feasible for a single
accurate post-hoc analysis rather than using it to compute best responses within
DeepFP.



12 N. Kamra et al.

Table 1: Results on four representative forests for m=n=1. Green dots: trees, blue
dots: guard locations sampled from defender’s strategy, red dots: lumberjack locations
sampled from adversary’s strategy. The exploitability metric shows that DLP which
is approximately the ground truth NE strategy is the least exploitable followed by
DeepFP, while OptGradFP’s inflexible explicit strategies make it heavily exploitable.

Forest structure DeepFP OptGradFP DLP
(approx. ground truth)

F1 ε = 88.57± 23.1 ε = 174.08± 21.04 ε = 95.60± 10.82

F2 ε = 16.90± 0.13 ε = 17.09± 0.39 ε = 16.38± 0.86

F3 ε = 88.72± 24.09 ε = 115.02± 0.86 ε = 72.95± 1.21

F4 ε = 30.72± 1.65 ε = 32.21± 0.52 ε = 23.97± 0.64

Single resource case: Table 1 shows results on four representative forests
when m=n=1. We observe that both DLP and DeepFP find strategies which
intuitively cover dense regions of the forest (central forest patch for F1, nearly
the whole forest for uniform forest F2, dense arch of trees for F3 and ring for
the forest F4 with a tree-less sector). On the uniform forest F2, the expected NE
strategy is a ring at a suitable radius from the center, as outputted by DeepFP.
However, DLP has a fine discretization and is able to sense minute deviations



Deep Fictitious Play 13

from uniform tree structure induced due to the sampling of trees from a uniform
distribution, hence it forms a circular ring broken and placed at different radii. A
similar trend is observed on F4. On F3, DeepFP finds a strategy strongly covering
the dense arch of trees, similar to that of DLP. Note that sometimes DeepFP even
finds less exploitable strategies than DLP (e.g. on F1), since DLP while being
close to the ground truth still involves an approximation due to discretization.
Overall, as expected DLP is in general the least exploitable method and is the
closest to the NE, followed by DeepFP. OptGradFP is more exploitable than
DeepFP for nearly uniform tree densities (F2 and F4) and heavily exploitable
for forests with concentrated tree densities (F1 and F3), since unlike DeepFP, it
is unable to approximate arbitrary strategy shapes.

Multiple resource case: Since DLP cannot scale for m or n > 1, we
compute the strategies and exploitability for m=n={2, 3} on F3 in table 2 for
DeepFP and OptGradFP only (more forests in appendix). We consistently ob-
serve that DeepFP accurately covers the dense forest arch of F3 and OptGradFP
spreads both players out more uniformly (due to explicit strategies). For m=n=3
case, DeepFP also allots a guard to the central patch of F3. Overall, DeepFP is
substantially less exploitable than OptGradFP.

Effect of memory size: In algorithm 1, we stored and best responded to
all games in the replay memory. Figure 4a shows the expected reward (E[rA])
achieved by the adversary’s final strategy against the defender’s final strategy,
when the replay memory size E is varied as a fraction γ of max games. Only
the most recent γ fraction of max games are stored and best responded to, and
the previous ones are deleted from mem. We observe that DeepFP is fairly robust
to memory size and even permits significantly small replay memories (upto 0.01
times max games) without significant deterioration in average rewards.

Running time analysis: Given the same total number of iterations, we plot
the time per iteration for DeepFP and OptGradFP in figure 4b with increasing m
and n (y-axis has log scale). OptGradFP’s training time increases very fast with
increasing m and n due to high game replay time. With our approximate best-
response oracle and estimation of payoffs using the game model network, DeepFP
is orders of magnitude faster. For a total 40K iterations, training DeepFP takes
about 0.64±0.34 hrs (averaged over values of m and n) as opposed to 22.98±8.39
hrs for OptGradFP.

Table 2: Results on forest F3 for m=n={2, 3}. Green dots: trees, blue dots: guard
locations sampled from defender’s strategy, red dots: lumberjack locations sampled
from adversary’s strategy. DeepFP is always less exploitable than OptGradFP.

DeepFP (m=n=2) DeepFP (m=n=3) OptGradFP (m=n=2) OptGradFP (m=n=3)

ε = 135.49± 15.24 ε = 137.53± 8.63 ε = 186.58± 23.71 ε = 190.00± 23.63



14 N. Kamra et al.

(a) Adversary’s average reward with memory size E as a fraction of total games played.
Even for a 1% fraction of memory size i.e. γ = 0.01, the average rewards are close to
γ = 1 case.

(b) Time per iteration vs. players’ resources. DeepFP is orders of magnitude faster
than OptGradFP (y-axis has log scale).

Fig. 4



Deep Fictitious Play 15

5 Conclusion

We have presented DeepFP, an approximate fictitious play algorithm for games
with continuous action spaces. DeepFP implicitly represents players’ best re-
sponses via generative neural networks without prior shape assumptions and
optimizes them using a learnt game-model network with gradient-based train-
ing. It can also utilize approximate best response oracles whenever available,
thereby harnessing prowess in approximation algorithms from discrete planning
and operations research. DeepFP provides significant speedup in training time
and scales well with growing number of resources.

DeepFP can be easily extended to multi-player applications, with each player
best responding to the joint belief density over all other players using an oracle
or a best response network. Like most gradient-based optimization algorithms,
DeepFP and OptGradFP can sometimes get stuck in local nash equilibria (see
appendix for experiments). While DeepFP gets stuck less often than OptGradFP,
principled strategies to mitigate local optima for gradient-based equilibrium find-
ing methods remains an interesting direction for future work.

Acknowledgments

This research was supported in part by NSF Research Grant IIS-1254206, NSF
Research Grant IIS-1850477 and MURI Grant W911NF-11-1-0332.

References

1. Amin, K., Singh, S., Wellman, M.P.: Gradient methods for stackelberg security
games. In: UAI. pp. 2–11 (2016)

2. Balduzzi, D., Racaniere, S., Martens, J., Foerster, J., Tuyls, K., Graepel, T.: The
mechanics of n-player differentiable games. In: International Conference on Ma-
chine Learning (2018)

3. Basilico, N., Celli, A., De Nittis, G., Gatti, N.: Coordinating multiple defensive
resources in patrolling games with alarm systems. In: Proceedings of the 16th
Conference on Autonomous Agents and Multiagent Systems. pp. 678–686 (2017)

4. Behnezhad, S., Derakhshan, M., Hajiaghayi, M., Seddighin, S.: Spatio-temporal
games beyond one dimension. In: Proceedings of the 2018 ACM Conference on
Economics and Computation. pp. 411–428 (2018)

5. Cermák, J., Bošanský, B., Durkota, K., Lisý, V., Kiekintveld, C.: Using correlated
strategies for computing stackelberg equilibria in extensive-form games. In: Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence. pp. 439–445.
AAAI’16 (2016)

6. Fang, F., Jiang, A.X., Tambe, M.: Optimal patrol strategy for protecting moving
targets with multiple mobile resources. In: AAMAS. pp. 957–964 (2013)

7. Ferguson, T.S.: Game Theory, vol. 2. Online (2014), https://www.math.ucla.edu/
∼tom/Game Theory/Contents.html

8. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. arXiv preprint arXiv:1703.03400 (2017)

9. Gan, J., An, B., Vorobeychik, Y., Gauch, B.: Security games on a plane. In: AAAI.
pp. 530–536 (2017)

https://www.math.ucla.edu/~tom/Game_Theory/Contents.html
https://www.math.ucla.edu/~tom/Game_Theory/Contents.html


16 N. Kamra et al.

10. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290 (2018)

11. Haskell, W., Kar, D., Fang, F., Tambe, M., Cheung, S., Denicola, E.: Robust
protection of fisheries with compass. In: IAAI (2014)

12. Heinrich, J., Lanctot, M., Silver, D.: Fictitious self-play in extensive-form games.
In: International Conference on Machine Learning. pp. 805–813 (2015)

13. Johnson, M.P., Fang, F., Tambe, M.: Patrol strategies to maximize pristine forest
area. In: AAAI (2012)

14. Kamra, N., Fang, F., Kar, D., Liu, Y., Tambe, M.: Handling continuous space
security games with neural networks. In: IWAISe: First International Workshop
on Artificial Intelligence in Security (2017)

15. Kamra, N., Gupta, U., Fang, F., Liu, Y., Tambe, M.: Policy learning for continuous
space security games using neural networks. In: AAAI (2018)

16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

17. Korzhyk, D., Yin, Z., Kiekintveld, C., Conitzer, V., Tambe, M.: Stackelberg vs.
nash in security games: An extended investigation of interchangeability, equiva-
lence, and uniqueness. JAIR 41, 297–327 (2011)

18. Krishna, V., Sjöström, T.: On the convergence of fictitious play. Mathematics of
Operations Research 23(2), 479–511 (1998)

19. Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Pérolat, J., Silver,
D., Graepel, T.: A unified game-theoretic approach to multiagent reinforcement
learning. In: Advances in Neural Information Processing Systems. pp. 4190–4203
(2017)

20. Leslie, D.S., Collins, E.J.: Generalised weakened fictitious play. Games and Eco-
nomic Behavior 56(2), 285–298 (2006)

21. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O.P., Mordatch, I.: Multi-agent
actor-critic for mixed cooperative-competitive environments. In: Advances in Neu-
ral Information Processing Systems. pp. 6379–6390 (2017)

22. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver,
D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In:
International Conference on Machine Learning. pp. 1928–1937 (2016)

23. Perkins, S., Leslie, D.: Stochastic fictitious play with continuous action sets. Journal
of Economic Theory 152, 179 – 213 (2014)

24. Rosenfeld, A., Kraus, S.: When security games hit traffic: Optimal traffic enforce-
ment under one sided uncertainty. In: Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-17. pp. 3814–3822 (2017)

25. Shamma, J.S., Arslan, G.: Unified convergence proofs of continuous-time fictitious
play. IEEE Transactions on Automatic Control 49(7), 1137–1141 (2004)

26. Wang, B., Zhang, Y., Zhong, S.: On repeated stackelberg security game with the
cooperative human behavior model for wildlife protection. In: Proceedings of the
16th Conference on Autonomous Agents and MultiAgent Systems. pp. 1751–1753.
AAMAS ’17 (2017)

27. Yang, R., Ford, B., Tambe, M., Lemieux, A.: Adaptive resource allocation for
wildlife protection against illegal poachers. In: AAMAS (2014)

28. Yin, Y., An, B., Jain, M.: Game-theoretic resource allocation for protecting large
public events. In: AAAI. pp. 826–833 (2014)

29. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola,
A.J.: Deep sets. In: Advances in Neural Information Processing Systems. pp. 3394–
3404 (2017)



Deep Fictitious Play 17

A Appendix

A.1 Approximate best response oracle for forest protection game

Algorithm 2: Approximate best response oracle

Data: mem, batch size mD, game simulator, m,n
Result: Guard assignments approximating BROD(σ̄A)

1 Draw batch of adversary actions {ui
A}i=1:mD from σ̄A (stored in mem);

2 Extract all mD × n lumberjack locations l ∈ {ui
A}i=1:mD ;

/* Capture-set for each lumberjack */

3 Initialize empty capture-set list S;

4 for l ∈ {ui
A}i=1:mD do

5 Create a capture-set s(l) (approximated by a convex polygon) i.e. as the set
of all guard locations which are within radius Rg from any point on the
trajectory of the lumberjack stopping at l;

6 Query reward w(l) of ambushing at l (using simulator);
7 Append (s, w, l) to S.

/* Output max reward capture-sets */

8 Find all possible intersections of sets s ∈ S while assigning a reward w′ =
∑

j wj

and lumberjacks l′ = ∩j lj to s′ = ∩jsj and append all new (s′, w′, l′) triplets
to S;

9 Pop the top m maximum reward sets in S one at a time and assign a single
guard to each, while updating all remaining sets’ weights to remove
lumberjacks covered by the guard allotment;

10 Output the guard assignments.

Devising a defender’s best response to the adversary’s belief distribution
is non-trivial for this game. So we propose a greedy approximation to the best
response. (see algorithm 2). We define a capture-set for a lumberjack location l as
the set of all guard locations within a radius Rg from any point on the trajectory
of the lumberjack. The algorithm involves creating capture-sets for lumberjack
locations l encountered so far in mem and intersecting these capture-sets to find
those which cover multiple lumberjacks. Then it greedily allocates guards to the
top m such capture-sets one at a time, while updating the remaining capture-sets
simultaneously to account for the lumberjacks ambushed by the current guard
allocation. Our algorithm involves the following approximations:

1. Mini-batch approximation: Since it is computationally infeasible to compute
the best response to the full set of actions in mem, we best-respond to a small
mini-batch of actions sampled randomly from mem to reduce computation
(line 1).

2. Approximate capture-sets: Initial capture-sets can have arbitrary arc-shaped
boundaries which can be hard to store and process. Instead, we approximate
them using convex polygons for simplicity (line 5). Doing this ensures that
all subsequent intersections also result in convex polygons.



18 N. Kamra et al.

3. Bounded number of intersections: Finding all possible intersections of capture-
sets can be reduced to finding all cliques in a graph with capture-sets as
vertices and pairwise intersections as edges. Hence it is an NP-hard problem
with complexity growing exponentially with the number of polygons. We
compute intersections in a pairwise fashion while adding the newly inter-
sected polygons to the list. This way the kth round of intersection produces
uptil all k + 1-polygon intersections and we stop after k = 4 rounds of in-
tersection to maintain polynomial time complexity (implemented for line 8,
but not shown explicitly in algorithm 2).

4. Greedy selection: After forming capture-set intersections, we greedily select
the top m sets with the highest rewards (line 9).

A.2 Supplementary Experiments with m,n>1

F1 DeepFP (m=n=2) OptGradFP (m=n=2)
ε = 153.21± 50.87 ε = 212.92± 27.95

F4 DeepFP (m=n=2) OptGradFP (m=n=2)
ε = 53.70± 3.85 ε = 49.00± 3.68

Table 3: More results on forests F1 and F4 for m=n=2.

Table 3 shows more experiments for DeepFP and OptGradFP with m,n>1.
We see that DeepFP is able to cover regions of importance with the players’
resources but OptGradFP suffers from the zero defender gradients issue due to
logit-normal strategy assumptions which often lead to sub-optimal results and
higher exploitability.

A.3 Locally Optimal Strategies

To further study the issue of getting stuck in locally optimal strategies we show
experiments with another forest F5 in Table 4. F5 has three dense tree patches



Deep Fictitious Play 19

F5 C1: DLP C2: OptGradFP C3: OptGradFP
(m=n=1) (m=n=1) (m=n=1)

C4: DeepFP C5: DeepFP C6: OptGradFP C7: DeepFP
(m=n=1) (m=n=1) (m=n=3) (m=n=3)

Table 4: Demonstrating getting stuck in locally optimal strategies.

and very sparse and mostly empty other parts. The optimal defender’s strat-
egy computed by DLP for m=n=1 is shown in C1. In such a case, due to the
tree density being broken into patches, gradients for both players would be zero
at many locations and hence both algorithms are expected to get stuck in lo-
cally optimal strategies depending upon their initialization. This is confirmed
by configurations C2, C3, C4 and C5 which show strategies for OptGradFP and
DeepFP with m=n=1 covering only a single forest patch. Once the defender gets
stuck on a forest patch, the probability of coming out of it is small since the tree
density surrounding the patches is negligible. However, with more resources for
the defender and the adversary m=n=3, DeepFP is mostly able to break out of
the stagnation and both players eventually cover more than a single forest patch
(see C7), whereas OptGradFP is only able to cover additional ground due to ran-
dom initialization of the 3 player resources but otherwise remains stuck around
a single forest patch (see C6). DeepFP is partially able to break out because
the defender’s best response does not rely on gradients but rather come from a
non-differentiable oracle. This shows how DeepFP can break out of local optima
even in the absence of gradients if a best response oracle is provided, however
OptGradFP relies purely on gradients and cannot overcome such situations.

A.4 Neural Network Architectures

All our models were trained using TensorFlow v1.5 on a Ubuntu 16.04 machine
with 32 CPU cores and a Nvidia Tesla K40c GPU.

Cournot game and Concave-convex game Best response networks for
the Cournot game and the Concave-convex game consist of single fully con-



20 N. Kamra et al.

nected layer with a sigmoid activation, directly mapping the 2-D input noise
z ∼ N ([0, 0], I2) to a scalar output qp for player p. Best response networks are
trained with Adam optimizer [16] and learning rate of 0.05. To estimate payoffs,
we use exact reward models for the game model networks. Maximum games were
limited to 30,000 for Cournot game and 50,000 for Concave-convex game.

Forest protection game The action up of player p contains the cylindrical co-
ordinates (radii and angles) for all resources of that player. So, the best response
network for the Forest protection game maps ZA ∈ R64 to the adversary action
uA ∈ Rn×2. It has 3 fully connected hidden layers with {128, 64, 64} units and
ReLU activations. The final output comes from two parallel fully connected lay-
ers with n (number of lumberjacks) units each: (a) first with sigmoid activations
outputting n radii ∈ [0, 1], and (b) second with linear activations outputting n
angles ∈ [−∞,∞], which are modulo-ed to be in [0, 2π] everywhere. All layers
are L2-regularized with coefficient 10−2:

xA = relu(FC64(relu(FC64(relu(FC128(ZA))))))

uA,rad = σ(FCn(xA)); uA,ang = FCn(xA)

The game model takes all players’ actions as inputs (i.e. matrices uD, uA of
shapes (m, 2) and (n, 2)) respectively) and produces two scalar rewards rD and
rA. It internally converts the angles in the second columns of these inputs to
the range [0, 2π]. Since the rewards should be invariant to the permutations
of the defender’s and adversary’s resources (guards and lumberjacks resp.), we
first pass the input matrices through non-linear embeddings to interpret their
rows as sets rather than ordered vectors (see Deep Sets [29] for details). These
non-linear embeddings are shared between the rows of the input matrix and
are themselves deep neural networks with three fully connected hidden layers
containing {60, 60, 120} units and ReLU activations. They map each row of the
matrices into a 120-dimensional vector and then add all these vectors. This effec-
tively projects the action of each player into a 120-dimensional action embedding
representation invariant to the ordering of the resources. The players’ embedding
networks are trained jointly as a part of the game model network. The players’
action embeddings are further passed through 3 hidden fully connected layers
with {1024, 512, 128} units and ReLU activations. The final output rewards are
produced by a last fully connected layer with 2 hidden units and linear activa-
tion. All layers are L2-regularized with coefficient 3× 10−4:

embp =
∑

dim=row

(DeepSet60,60,120(up)) ∀p ∈ {D,A}

r̂D, r̂A = FC2(relu(FC128(relu(FC512(relu(FC1024(embD, embA))))))

The models are trained with Adam optimizer [16]. Note that the permutation
invariant embeddings are not central to the game model network and only help
to incorporate an inductive bias for this game. We also tested the game model
network without the embedding networks and achieved similar performance with
about 2x increase in the number of iterations since the game model would need
to infer permutation invariance from data.


	DeepFP for Finding Nash Equilibrium in Continuous Action Spaces

